Ukr.Biochem.J. 2025; Volume 97, Issue 1, Jan-Feb, pp. 51-61

doi: https://doi.org/10.15407/ubj97.01.051

Biomarkers of apoptosis and endoplasmic reticulum stress in cardiomyocytes of rats under chronic ethanol consumption and germanium-nicotinic acid complex administration

I. V. Nizhenkovska1, O. V. Kuznetsova1,
V. P. Narokha1, D. O. Labudzynskyi2*

1Department of Medicinal Chemistry and Toxicology,
Bogomolets National Medical University, Kyiv, Ukraine;
2Department of Vitamins and Coenzyme Biochemistry,
Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
*e-mail: labudzinskidmytro@gmail.com

Received: 11 November 2024; Revised: 03 February 2025;
Accepted: 21 February 2025; Available on-line: 03 March 2025

Chronic ethanol consumption is associated with a range of harmful effects on different systems of the body, including the heart. Coordination complexes of bioactive compounds based on non-toxic metals are attracting interest in biomedical research due to their potential therapeutic properties. The study aimed to evaluate­ the influence of the germanium-nicotinic acid complex (MIGU-1) on apoptosis and endoplasmic reticulum (ER) stress indicators in the myocardium of rats under chronic alcohol exposure. Female Wistar rats were divided into three groups of 6 animals each: intact animals; rats that received 20% ethanol as the sole source of liquid for 110 days; animals with chronic consumption of 20% ethanol, which from the 90th day until the end of the experiment were intraperitoneally administered MIGU-1 solution (10 mg/kg/day). Biomarkers related to apoptosis, ER stress autophagy were assessed by Western blot analysis. It was shown that chronic ethanol consumption significantly activated apoptotic pathways in rat myocardium tissue, evidenced by increased levels of cleaved caspase-3 and BAX proteins alongside Beclin-1 level elevation, indicating enhanced autophagy. A significant decrease in the content of the protein IRE1 and its phosphorylated form in myocardial with no changes in GRP78 protein level was detected. Treatment with MIGU-1 resulted in both ethanol-induced apoptosis reduction and ER stress attenuation in cardiomyocytes with the level of Beclin-1 and GRP78 proteins remaining unchanged. Our findings demonstrate that the MIGU-1 complex promotes cardiomyocyte survival by balancing apoptosis and unfolded protein response, thus preventing alcohol-related­ cardiac injury.

Keywords: , , , , , , ,


References:

  1. Le Daré B, Lagente V, Gicquel T. Ethanol and its metabolites: update on toxicity, benefits, and focus on immunomodulatory effects. Drug Metab Rev. 2019;51(4):545-561. PubMed, CrossRef
  2. Wong B, Ryan C, Fagbamigbe A, Bray JJ, McNamee B, Niranjan V, Zhou S, Bogdanet D, Reddin C, McDonald K, Ledwidge M. Alcohol consumption and heart failure: a dose-response meta-analysis. Cochrane Database Syst Rev. 2024;8(8):CD015398. PubMed, PubMedCentral, CrossRef
  3. Hyun J, Han J, Lee C, Yoon M, Jung Y. Pathophysiological Aspects of Alcohol Metabolism in the Liver. Int J Mol Sci. 2021;22(11):5717. PubMed, PubMedCentral, CrossRef
  4. Fernández-Solà J, Planavila Porta A. New Treatment Strategies for Alcohol-Induced Heart Damage. Int J Mol Sci. 2016;17(10):1651. PubMed, PubMedCentral, CrossRef
  5. Rungratanawanich W, Qu Y, Wang X, Essa MM, Song BJ. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp Mol Med. 2021;53(2):168-188. PubMed, PubMedCentral, CrossRef
  6. Fernández-Solà J. The effects of ethanol on the heart: alcoholic cardiomyopathy. Nutrients. 2020;12(2):572. PubMed, PubMedCentral, CrossRef
  7. Ji C. Mechanisms of alcohol-induced endoplasmic reticulum stress and organ injuries. Biochem Res Int. 2012;2012:216450. PubMed, PubMedCentral, CrossRef
  8. Luo X, Sun J, Kong D, Lei Y, Gong F, Zhang T, Shen Z, Wang K, Luo H, Xu Y. The role of germanium in diseases: exploring its important biological effects. J Transl Med. 2023;21(1):795. PubMed, PubMedCentral, CrossRef
  9. Abdel Gaber SA, Hamza AH, Tantawy MA, Toraih EA, Ahmed HH. Germanium dioxide nanoparticles mitigate biochemical and molecular changes characterizing Alzheimer’s disease in rats. Pharmaceutics. 2023;15(5):1386. PubMed, PubMedCentral, CrossRef
  10. Feng C, Ouyang J, Tang Z, Kong N, Liu Y, Fu L, Ji X, Xie T, Farokhzad OC, Tao W. Germanene-based theranostic materials for surgical adjuvant treatment: inhibiting tumor recurrence and wound infection. Matter. 2020;3(1):127-144. CrossRef
  11. Ying W, Alano CC, Garnier P, Swanson RA. NAD+ as a metabolic link between DNA damage and cell death. J Neurosci Res. 2005;79(1-2):216-223. PubMed, CrossRef
  12. Zou L, Collins HE, Young ME, Zhang J, Wende AR, Darley-Usmar VM, Chatham JC. The identification of a novel calcium-dependent link between NAD+ and glucose deprivation-induced increases in protein O-GlcNAcylation and ER stress. Front Mol Biosci. 2021;8:780865. PubMed, PubMedCentral, CrossRef
  13. Mandal A, Rai R, Saha S, Kushwaha R, Wei L, Gogoi H, Mandal AA, Yadav AK, Huang H, Dutta A, Dhar P, Banerjee S. Polypyridyl-based Co(III) complexes of vitamin B6 Schiff base for photoactivated antibacterial therapy. Dalton Trans. 2023;52(46):17562-17572. PubMed, CrossRef
  14. Hadjiadamou I, Vlasiou M, Spanou S, Simos Y, Papanastasiou G, Kontargiris E, Dhima I, Ragos V, Karkabounas S, Drouza C, Keramidas AD. Synthesis of vitamin E and aliphatic lipid vanadium(IV) and (V) complexes, and their cytotoxic properties. J Inorg Biochem. 2020;208:111074. PubMed, CrossRef
  15. Harihar S, Mone N, Satpute SK, Chadar D, Chakravarty D, Weyhermüller T, Butcher RJ, Salunke-Gawali S. Metal complexes of a pro-vitamin K3 analog phthiocol (2-hydroxy-3-methylnaphthalene-1,4-dione): synthesis, characterization, and anticancer activity. Dalton Trans. 2022;51(45):17338-17353. PubMed, CrossRef
  16. Cunningham CL, Pina MM. Alcohol Preference Tests. In: Stolerman IP, Price LH. (eds). Encyclopedia of Psychopharmacology. Springer, Berlin, Heidelberg, 2015. P. 79-83. CrossRef
  17. Lukyanchuk VD, Kravets DS, Tchadova LV. Toxicometry of potential cerebroprotector MIGU-1. Integr Anthropol. 2008;(1(11)):46-49. (In Ukrainian).
  18. Seifullina II, Martsinko EE, Khristova NM, Chebanenko EA. Molecular complexes of germanium tetrachloride with niacin, nicotinic amide, isonicotinic hydrazide and their pharmacological actions. Odesa Nat Univ Herald. Chemistry. 2016;21(2(58)):18-28. CrossRef
  19. Pillai-Kastoori L, Schutz-Geschwender AR, Harford JA. A systematic approach to quantitative Western blot analysis. Anal Biochem. 2020;593:113608. PubMed, CrossRef
  20. Gerber GB, Léonard A. Mutagenicity, carcinogenicity and teratogenicity of germanium compounds. Mutat Res. 1997;387(3):141-146. PubMed, CrossRef
  21. Sabbioni E, Fortaner S, Bosisio S, Farina M, Del Torchio R, Edel J, Fischbach M. Metabolic fate of ultratrace levels of GeCl(4) in the rat and in vitro studies on its basal cytotoxicity and carcinogenic potential in Balb/3T3 and HaCaT cell linesdagger. J Appl Toxicol. 2010;30(1):34-41. PubMed, CrossRef
  22. Nizhenkovska I, Kuznetsova O, Narokha V. Intensity of endoplasmic reticulum stress, autophagy, and apoptosis in the cerebral cortex of rats with chronic ethanol consumption under the influence of the complex compound of germanium with nicotinic acid. ScienceRise: Pharm Sci. 2023;6(46)):70-78. CrossRef
  23. Lin Q, Zuo W, Liu Y, Wu K, Liu Q. NAD+ and cardiovascular diseases. Clin Chim Acta. 2021;515:104-110. PubMed, CrossRef
  24. Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 2020;21(8):421-438. PubMed, PubMedCentral, CrossRef
  25. Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):352. PubMed, PubMedCentral, CrossRef
  26. Urra H, Dufey E, Avril T, Chevet E, Hetz C. Endoplasmic reticulum stress and the hallmarks of cancer. Trends Cancer. 2016;2(5):252-262. PubMed, CrossRef
  27. Ibrahim IM, Abdelmalek DH, Elfiky AA. GRP78: A cell’s response to stress. Life Sci. 2019;226:156-163. PubMed, PubMedCentral, CrossRef
  28. Liu Z, Liu G, Ha DP, Wang J, Xiong M, Lee AS. ER chaperone GRP78/BiP translocates to the nucleus under stress and acts as a transcriptional regulator. Proc Natl Acad Sci USA. 2023;120(31):e2303448120. PubMed, PubMedCentral, CrossRef
  29. Bashir S, Banday M, Qadri O, Bashir A, Hilal N, Nida-I-Fatima, Rader S, Fazili KM. The molecular mechanism and functional diversity of UPR signaling sensor IRE1. Life Sci. 2021;265:118740. PubMed, CrossRef
  30. Read A, Schröder M. The Unfolded Protein Response: An Overview. Biology (Basel). 2021;10(5):384. PubMed, PubMedCentral, CrossRef
  31. Bhardwaj M, Leli NM, Koumenis C, Amaravadi RK. Regulation of autophagy by canonical and non-canonical ER stress responses. Semin Cancer Biol. 2020;66:116-128. PubMed, PubMedCentral, CrossRef
  32. Zhu H, He L. Beclin 1 biology and its role in heart disease. Curr Cardiol Rev. 2015;11(3):229-237. PubMed, PubMedCentral, CrossRef
  33. Maejima Y, Isobe M, Sadoshima J. Regulation of autophagy by Beclin 1 in the heart. J Mol Cell Cardiol. 2016;95:19-25. PubMed, PubMedCentral, CrossRef
  34. Prerna K, Dubey VK. Beclin1-mediated interplay between autophagy and apoptosis: New understanding. Int J Biol Macromol. 2022;204:258-273. PubMed, CrossRef
  35. Djavaheri-Mergny M, Maiuri MC, Kroemer G. Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1.
    Oncogene. 2010;29(12):1717-1719. PubMed, CrossRef
  36. Naseer MI, Ullah N, Ullah I, Koh PO, Lee HY, Park MS, Kim MO. Vitamin C protects against ethanol and PTZ-induced apoptotic neurodegeneration in prenatal rat hippocampal neurons. Synapse. 2011;65(7):562-571. PubMed, CrossRef
  37. Biswas U, Roy R, Ghosh S, Chakrabarti G. The interplay between autophagy and apoptosis: its implication in lung cancer and therapeutics. Cancer Lett. 2024;585:216662. PubMed, CrossRef
  38. Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease.
    J Mol Cell Cardiol. 2019;136:27-41. PubMed, CrossRef
  39. Digby JE, Lee JM, Choudhury RP. Nicotinic acid and the prevention of coronary artery disease. Curr Opin Lipidol. 2009;20(4):321-326. PubMed, CrossRef
  40. Narokha VP. The effect of the germanium complex with nicotinic acid on oxidative modification of cardiac and hepatic proteins in the experimental chronic intoxication with doxorubicin in rats. Clin Pharm. 2016;20(4):35-38. CrossRef
  41. Litwiniuk A, Kalisz M, Domańska A, Chmielowska M, Martyńska L, Baranowska-Bik A, Bik W. Nicotinic acid attenuates amyloid β1-42-induced mitochondrial dysfunction and inhibits the mitochondrial pathway of apoptosis in differentiated SH-SY5Y cells. Neurochem Int. 2024;178:105772. PubMed, CrossRef
  42. Kamat JP, Devasagayam TP. Nicotinamide (vitamin B3) as an effective antioxidant against oxidative damage in rat brain mitochondria. Redox Rep. 1999;4(4):179-184. PubMed, CrossRef
  43. Ali MM. Germanium l-Cysteine Alpha-Tocopherol Complex as Stimulator to Antioxidant Defense System. In: Kretsinger RH, Uversky VN, Permyakov EA. (eds) Encyclopedia of Metalloproteins. Springer, New York, NY, 2013. P. 836-841. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.