Ukr.Biochem.J. 2025; Volume 97, Issue 1, Jan-Feb, pp. 25-43

doi: https://doi.org/10.15407/ubj97.01.025

Curcumin exerts protective effects against doxorubicin-induced cardiotoxicity

O. О. Klymenko1*, T. I. Drevytska1, O. O. Gonchar1, K. V. Tarasova2,
V. I. Nosar1, V. Ye. Dosenko1, I. M. Mankovska1

1Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv;
2Bogomolets National Medical University, Kyiv, Ukraine;
*e-mail: klymenkooks2018@gmail.com

Received: 16 October 2024; Revised: 03 December 2024;
Accepted: 21 February 2025; Available on-line: 03 Marchy 2025

The mechanism of doxorubicin (Dox) cardiotoxicity involves different pathways, including oxidative stress and mitochondrial dysfunction. It’s supposed that pharmacological effect on HIF gene expression may protect the heart against the detrimental effects of the doxorubicin-induced injury. We hypothesized that the cardioprotective effects of Curcumin (Curc) are exerted by regulating HIF and its target genes expression. To test this, an in vitro model of Dox-induced injury to primary myocardial cardiomyocytes was used. Isolated Wistar rat neonatal cardiomyocytes were incubated in the culture medium for 24 h in control, either with Dox (0.5 μmol/ml) or Curc (20 μmol/ml), or in their combination in the same doses. Mitochondria were isolated from rat cardiomyocytes culture. It was demonstrated that cardiomyocytes exposure to Dox led to an increase in the activity of oxidative stress markers in isolated mitochondria, a decrease in the efficiency of the respiratory chain and phosphorylation processes, decline of membrane potential and the rate of K+ ions entry into mitochondria. Doxorubicin inhibited the expression of mRNA of both HIF-1α, 2α, 3α subunits and its important target genes PDK-1 and IGF-1 in mitochondria. A negative impact on the cardiomyocyte contractile activity was observed. The combined use of doxorubicin with curcumin led to an increase of cardiomyocytes viability and attenuation of oxidative stress in mitochondria, prevented the development of mitochondrial dysfunction and significantly improved the contractile activity of cardiomyocytes.

Keywords: , , , , , ,


References:

  1. Belger C, Abrahams C, Imamdin A, Lecour S. Doxorubicin-induced cardiotoxicity and risk factors. Int J Cardiol Heart Vasc. 2023;50:101332. PubMed, PubMedCentral, CrossRef
  2. San-Millán I. The Key Role of Mitochondrial Function in Health and Disease. Antioxidants (Basel). 2023;12(4):782. PubMed, PubMedCentral, CrossRef
  3. Rossmann MP, Dubois SM, Agarwal S, Zon LI. Mitochondrial function in development and disease. Dis Model Mech. 2021;14(6):dmm048912. PubMed, PubMedCentral, CrossRef
  4. Lemoniatis M. Adriamycine-Induced Cardiomyopathy. J Med Cases. 2015;6(5):226-228. CrossRef
  5. Vauzour D. Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longev. 2012;2012:914273. PubMed, PubMedCentral, CrossRef
  6. Yang C, Zhu Q, Chen Y, Ji K, Li S, Wu Q, Pan Q, Li J. Review of the protective mechanism of curcumin on cardiovascular disease. Drug Des Devel Ther. 2024;18:165-192. PubMed, PubMedCentral, CrossRef
  7. Dkhar P, Sharma R. Effect of dimethylsulphoxide and curcumin on protein carbonyls and reactive oxygen species of cerebral hemispheres of mice as a function of age. Int J Dev Neurosci. 2010;28(5):351-357. PubMed, CrossRef
  8. Pohl F, Kong Thoo Lin P. The Potential Use of Plant Natural Products and Plant Extracts with Antioxidant Properties for the Prevention/Treatment of Neurodegenerative Diseases: In Vitro, In Vivo and Clinical Trials. Molecules. 2018;23(12):3283. PubMed, PubMedCentral, CrossRef
  9. Tang KL, Caffrey NP, Nóbrega DB, Cork SC, Ronksley PE, Barkema HW, Polachek AJ, Ganshorn H, Sharma N, Kellner JD, Ghali WA. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis. Lancet Planet Health. 2017;1(8):e316-e327. PubMed, PubMedCentral, CrossRef
  10. Gonchar OA, Mankovska IN. Time-dependent effect of severe hypoxia/reoxygenation on oxidative stress level, antioxidant capacity and p53 accumulation in mitochondria of rat heart. Ukr Biochem J. 2017;89(6):39-47. (In Ukrainian). CrossRef
  11. Tofano RJ, Pescinni-Salzedas LM, Chagas EFB, Detregiachi CRP, Guiguer EL, Araujo AC, Bechara MD, Rubira CJ, Barbalho SM. Association of Metabolic Syndrome and Hyperferritinemia in Patients at Cardiovascular Risk. Diabetes Metab Syndr Obes. 2020;13:3239-3248. PubMed, PubMedCentral, CrossRef
  12. Młynarska E, Hajdys J, Czarnik W, Fularski P, Leszto K, Majchrowicz G, Lisińska W, Rysz J, Franczyk B. The Role of Antioxidants in the Therapy of Cardiovascular Diseases-A Literature Review. Nutrients. 2024;16(16):2587. PubMed, PubMedCentral, CrossRef
  13. Tan R, Lam AJ, Tan T, Han J, Nowakowski DW, Vershinin M, Simó S, Ori-McKenney KM, McKenney RJ. Microtubules gate tau condensation to spatially regulate microtubule functions. Nat Cell Biol. 2019;21(9):1078-1085. PubMed, PubMedCentral, CrossRef
  14.  Bkaily G, Abou Abdallah N, Simon Y, Jazzar A, Jacques D. Vascular smooth muscle remodeling in health and disease. Can J Physiol Pharmacol. 2021;99(2):171-178. PubMed, CrossRef
  15. Surova OV, Nagibin VS, Tumanovskaya LV, Dosenko VE, Moibenko AA. Effect of a low dose of proteasome inhibitor on cell death and gene expression in neonatal rat cardiomyocyte cultures exposed to anoxia-reoxygenation. Exp Clin Cardiol. 2009;14(2):e57-e61. PubMed, PubMedCentral
  16. Webster DR, Patrick DL. Beating rate of isolated neonatal cardiomyocytes is regulated by the stable microtubule subset. Am J Physiol Heart Circ Physiol. 2000;278(5):H1653-H1661. PubMed, CrossRef
  17. Berdichevski A, Meiry G, Milman F, Reiter I, Sedan O, Eliyahu S, Duffy HS, Youdim MB, Binah O. TVP1022 protects neonatal rat ventricular myocytes against doxorubicin-induced functional derangements. J Pharmacol Exp Ther. 2010;332(2):413-420. PubMed, PubMedCentral, CrossRef
  18. Bazan C, Torres Barba D, Blomgren P, Paolini P. Image processing techniques for assessing contractility in isolated neonatal cardiac myocytes. Int J Biomed Imaging. 2011;2011:729732. PubMed, PubMedCentral, CrossRef
  19. Jung AS, Kubo H, Wilson R, Houser SR, Margulies KB. Modulation of contractility by myocyte-derived arginase in normal and hypertrophied feline myocardium. Am J Physiol Heart Circ Physiol. 2006;290(5):H1756-H1762. PubMed, CrossRef
  20. Kandadi MR, Hua Y, Ma H, Li Q, Kuo SR, Frankel AE, Ren J. Anthrax lethal toxin suppresses murine cardiomyocyte contractile function and intracellular Ca2+ handling via a NADPH oxidase-dependent mechanism. PLoS One. 2010;5(10):e13335. PubMed, PubMedCentral, CrossRef
  21. Mishra S, Chander V, Banerjee P, Oh JG, Lifirsu E, Park WJ, Kim DH, Bandyopadhyay A. Interaction of annexin A6 with alpha actinin in cardiomyocytes. BMC Cell Biol. 2011;12:7. PubMed, PubMedCentral, CrossRef
  22. Prasad SM, Al-Dadah AS, Byrd GD, Flagg TP, Gomes J, Damiano RJ Jr, Nichols CG, Lawton JS. Role of the sarcolemmal adenosine triphosphate-sensitive potassium channel in hyperkalemic cardioplegia-induced myocyte swelling and reduced contractility. Ann Thorac Surg. 2006;81(1):148-153. PubMed, CrossRef
  23. Rodriguez AG, Han SJ, Regnier M, Sniadecki NJ. Substrate stiffness increases twitch power of neonatal cardiomyocytes in correlation with changes in myofibril structure and intracellular calcium. Biophys J. 2011;101(10):2455-2464. PubMed, PubMedCentral, CrossRef
  24. Ren J, Bode AM. Altered cardiac excitation-contraction coupling in ventricular myocytes from spontaneously diabetic BB rats. Am J Physiol Heart Circ Physiol. 2000;279(1):H238-H244. PubMed, CrossRef
  25. Kondrashova MN, Fedotcheva NI, Saakyan IR, Sirota TV, Lyamzaev KG, Kulikova MV, Temnov AV. Preservation of native properties of mitochondria in rat liver homogenate. Mitochondrion. 2001;1(3):249-267. PubMed, CrossRef
  26. Chance B, Williams GR. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65-134. PubMed, CrossRef
  27. Estabrook RW. Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. Methods Enzymol. 1967;10:41-47. CrossRef
  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275. PubMed, CrossRef
  29. Beavis AD. Upper and lower limits of the charge translocation stoichiometry of cytochrome c oxidase. J Biol Chem. 1987;262(13):6174-6181. PubMed, CrossRef
  30. Saad HA, Terry MA, Shamie N, Chen ES, Friend DF, Holiman JD, Stoeger C. An easy and inexpensive method for quantitative analysis of endothelial damage by using vital dye staining and Adobe Photoshop software. Cornea. 2008;27(7):818-824. PubMed, CrossRef
  31. Chazotte B. Labeling mitochondria with MitoTracker dyes. Cold Spring Harb Protoc. 2011;2011(8):990-992. PubMed, CrossRef
  32. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254. PubMed, CrossRef
  33. Papastergiadis A, Mubiru E, Van Langenhove H, De Meulenaer B. Malondialdehyde measurement in oxidized foods: evaluation of the spectrophotometric thiobarbituric acid reactive substances (TBARS) test in various foods. J Agric Food Chem. 2012;60(38):9589-9594. PubMed, CrossRef
  34. Huwiler M, Kohler H. Pseudo-catalytic degradation of hydrogen peroxide in the lactoperoxidase/H2O2/iodide system. Eur J Biochem. 1984;141(1):69-74. PubMed, CrossRef
  35. Korolyuk MA, Ivanova LI, Maiorova IG, Tokarev VE. A method of determining catalase activity. Lab Delo. 1988:(1):16-19. (In Russian). PubMed
  36. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170-3175. PubMed, CrossRef
  37. Twomey PJ, Kroll MH. How to use linear regression and correlation in quantitative method comparison studies. Int J Clin Pract. 2008;62(4):529-538. PubMed, CrossRef
  38. Kim YS, Kwon JS, Cho YK, Jeong MH, Cho JG, Park JC, Kang JC, Ahn Y. Curcumin reduces the cardiac ischemia-reperfusion injury: involvement of the toll-like receptor 2 in cardiomyocytes. J Nutr Biochem. 2012;23(11):1514-1523. PubMed, CrossRef
  39. Yang Y, Duan W, Lin Y, Yi W, Liang Z, Yan J, Wang N, Deng C, Zhang S, Li Y, Chen W, Yu S, Yi D, Jin Z. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic Biol Med. 2013;65:667-679. PubMed, CrossRef
  40. Yu W, Zha W, Ke Z, Min Q, Li C, Sun H, Liu C. Curcumin protects neonatal rat cardiomyocytes against high glucose-induced apoptosis via PI3K/Akt signalling pathway. J Diabetes Res. 2016;2016:4158591. PubMed, PubMedCentral, CrossRef
  41. Kholmukhamedov A, Schwartz JM, Lemasters JJ. Isolated mitochondria infusion mitigates ischemia-reperfusion injury of the liver in rats: mitotracker probes and mitochondrial membrane potential. Shock. 2013;39(6):543. PubMed, PubMedCentral, CrossRef
  42.  Zhang J, Clark JR Jr, Herman EH, Ferrans VJ. Doxorubicin-induced apoptosis in spontaneously hypertensive rats: differential effects in heart, kidney and intestine, and inhibition by ICRF-187. J Mol Cell Cardiol. 1996;28(9):1931-1943. PubMed, CrossRef
  43. Sakai T, Inagaki R, Taniguchi T, Shinozuka K, Kunitomo M, Hayashi N, Ishii Y, Muramatsu I. Persistent release of noradrenaline caused by anticancer drug 4′-epidoxorubicin in rat tail artery in vitro. Eur J Pharmacol. 1998;356(1):25-30. PubMed, CrossRef
  44.  Wakasugi S. Drug-induced myocardial disease–adriamycin cardiotoxicity. Nihon Rinsho. 2000;58(1):204-211. PubMed
  45. Wallace KB, Sardão VA, Oliveira PJ. Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circ Res. 2020;126(7):926-941. PubMed, PubMedCentral, CrossRef
  46. Brahimi-Horn MC, Chiche J, Pouysségur J. Hypoxia and cancer. J Mol Med (Berl). 2007;85(12):1301-1307. PubMed, CrossRef
  47. Semenza GL. Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov Today. 2007;12(19-20):853-859. PubMed, CrossRef
  48. YangY, Qian DZ, Rey S, Liu JO, Semenza GL. Daily administration of low-dose daunorubicin or doxorubicin inhibits hypoxia-inducible factor 1 and tumor vascularization. bioRxiv. 2022;06.15.492526. CrossRef
  49. Srivastava G, Mehta JL. Currying the heart: curcumin and cardioprotection. J Cardiovasc Pharmacol Ther. 2009;14(1):22-27. PubMed, CrossRef
  50. Ströfer M, Jelkmann W, Depping R. Curcumin decreases survival of Hep3B liver and MCF-7 breast cancer cells: the role of HIF
    Mareike Ströfer 1 , Wolfgang Jelkmann, Reinhard Depping. Strahlenther Onkol. 2011;187(7):393-400. PubMed, CrossRef
  51. Swamy AV, Gulliaya S, Thippeswamy A, Koti BC, Manjula DV. Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian J Pharmacol. 2012;44(1):73-77.  PubMed, PubMedCentral, CrossRef
  52. Ito H, Miller SC, Billingham ME, Akimoto H, Torti SV, Wade R, Gahlmann R, Lyons G, Kedes L, Torti FM. Doxorubicin selectively inhibits muscle gene expression in cardiac muscle cells in vivo and in vitro. Proc Natl Acad Sci USA. 1990;87(11):4275-4279. PubMed, PubMedCentral, CrossRef
  53. Xiao J, Sun GB, Sun B, Wu Y, He L, Wang X, Chen RC, Cao L, Ren XY, Sun XB. Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. Toxicology. 2012;292(1):53-62. PubMed, CrossRef
  54. Linnik OA , Drevytska TI, Chornyy SA, Dosenko VY , Mankovska IN. The doxorubicin effect on culture of the isolated neonatal cardiac hystiocytes rat. Rep Vinnytsia Nat Med Univ. 2014;18(2)8):383-387. (In Ukrainian).
  55. Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA, Piacentini M, Nagata S, Melino G. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 2005;12(Suppl 2):1463-1467. PubMed, CrossRef
  56. Shin EJ, Nam Y, Lee JW, Nguyen PT, Yoo JE, Tran TV, Jeong JH, Jang CG, Oh YJ, Youdim MBH, Lee PH, Nabeshima T, Kim HC. N-Methyl, N-propynyl-2-phenylethylamine (MPPE), a Selegiline Analog, Attenuates MPTP-induced Dopaminergic Toxicity with Guaranteed Behavioral Safety: Involvement of Inhibitions of Mitochondrial Oxidative Burdens and p53 Gene-elicited Pro-apoptotic Change. Mol Neurobiol. 2016;53(9):6251-6269. PubMed, CrossRef
  57. Kung G, Konstantinidis K, Kitsis RN. Programmed necrosis, not apoptosis, in the heart. Circ Res. 2011;108(8):1017-1036. PubMed, CrossRef
  58. Linnik OO, Drevytska TI, Gonchar OO, Chornyy SA, Kovalyov OM, Mankovska IM. Doxorubicin-induced alterations in pro-and antioxidant balance and their correction by curcumin in the neonatal rat cardiomyocytes culture. Fiziol Zh. 2015;61(5):90-98. (In Ukrainian). PubMed, CrossRef
  59. Drevytska T, Gavenauskas B, Drozdovska S, Nosar V, Dosenko V, Mankovska I. HIF-3α mRNA expression changes in different tissues and their role in adaptation to intermittent hypoxia and physical exercise. Pathophysiology. 2012;19(3):205-214. PubMed, CrossRef
  60. Qannita RA, Alalami AI, Harb AA, Aleidi SM, Taneera J, Abu-Gharbieh E, El-Huneidi W, Saleh MA, Alzoubi KH, Semreen MH, Hudaib M, Bustanji Y. Targeting hypoxia-inducible factor-1 (HIF-1) in cancer: emerging therapeutic strategies and pathway regulation. Pharmaceuticals (Basel). 2024;17(2):195. PubMed, PubMedCentral, CrossRef
  61. Bae MK, Kim SH, Jeong JW, Lee YM, Kim HS, Kim SR, Yun I, Bae SK, Kim KW. Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Oncol Rep. 2006;15(6):1557-1562. PubMed, CrossRef
  62. Mattiussi M, Tilman G, Lenglez S, Decottignies A. Human telomerase represses ROS-dependent cellular responses to Tumor Necrosis Factor-α without affecting NF-κB activation. Cell Signal. 2012;24(3):708-717. PubMed, CrossRef
  63. Li J, Qu Y, Chen D, Zhang L, Zhao F, Luo L, Pan L, Hua J, Mu D. The neuroprotective role and mechanisms of TERT in neurons with oxygen-glucose deprivation. Neuroscience. 2013;252:346-358. PubMed, CrossRef
  64. Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y, Kajstura J, Baserga R, Anversa P. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest. 1997;100(8):1991-1999. PubMed, PubMedCentral, CrossRef
  65. Xiang FL, Lu X, Hammoud L, Zhu P, Chidiac P, Robbins J, Feng Q. Cardiomyocyte-specific overexpression of human stem cell factor improves cardiac function and survival after myocardial infarction in mice. Circulation. 2009;120(12):1065-1074. PubMed, CrossRef
  66. Wu W, Lee WL, Wu YY, Chen D, Liu TJ, Jang A, Sharma PM, Wang PH. Expression of constitutively active phosphatidylinositol 3-kinase inhibits activation of caspase 3 and apoptosis of cardiac muscle cells. J Biol Chem. 2000;275(51):40113-40119. PubMed, CrossRef
  67. Fabbi P, Spallarossa P, Garibaldi S, Barisione C, Mura M, Altieri P, Rebesco B, Monti MG, Canepa M, Ghigliotti G, Brunelli C, Ameri P. Doxorubicin impairs the insulin-like growth factor-1 system and causes insulin-like growth factor-1 resistance in cardiomyocytes. PLoS One. 2015;10(5):e0124643. PubMed, PubMedCentral, CrossRef
  68. Kim H, Park J, Tak KH, Bu SY, Kim E. Chemopreventive effects of curcumin on chemically induced mouse skin carcinogenesis in BK5.insulin-like growth factor-1 transgenic mice. In Vitro Cell Dev Biol Anim. 2014;50(9):883-892. PubMed, CrossRef
  69. Kirito K, Hu Y, Komatsu N. HIF-1 prevents the overproduction of mitochondrial ROS after cytokine stimulation through induction of PDK-1. Cell Cycle. 2009;8(17):2844-2849. PubMed, CrossRef
  70. Hur H, Xuan Y, Kim YB, Lee G, Shim W, Yun J, Ham IH, Han SU. Expression of pyruvate dehydrogenase kinase-1 in gastric cancer as a potential therapeutic target. Int J Oncol. 2013;42(1):44-54. PubMed, PubMedCentral, CrossRef
  71. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29(3-4):222-230. PubMed, CrossRef
  72. Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci. 2000;25(10):502-508. PubMed, CrossRef
  73. Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023;11:1158198. PubMed, PubMedCentral,CrossRef
  74. Sazontova TG, Anchishkina NA, Zhukova AG, Bedareva IV, Pylaeva EA, Kriventsova NA, Polianskaia AA, Iurasov AR, Arkhipenko YuV. Active oxygene forms and redox-signaling role in adaptation to oxygene contens changing. Fiziol Zh. 2008;54(2):18-32. (In Russian). PubMed
  75. Wang J, Ma JH, Giffard RG. Overexpression of copper/zinc superoxide dismutase decreases ischemia-like astrocyte injury. Free Radic Biol Med. 2005;38(8):1112-1118. PubMed, CrossRef
  76. Grisham MB, McCord JM. (). Chemistry and cytotoxicity of reactive oxygen metabolites. In: Physiology, of Oxygen Radicals, Eds. A.E. Taylor, S. Matalon and P. Ward, Bethesda, American Physiological Society, 1986. pp 1–18.
  77. Appiah-Opong R, Commandeur JN, van Vugt-Lussenburg B, Vermeulen NP. Inhibition of human recombinant cytochrome P450s by curcumin and curcumin decomposition products. Toxicology. 2007;235(1-2):83-91. PubMed, CrossRef
  78. Sandur SK, Ichikawa H, Pandey MK, Kunnumakkara AB, Sung B, Sethi G, Aggarwal BB. Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane). Free Radic Biol Med. 2007 Aug 15;43(4):568-580. PubMed, PubMedCentral, CrossRef
  79. Miriyala S, Panchatcharam M, Rengarajulu P. Cardioprotective effects of curcumin. Adv Exp Med Biol. 2007;595:359-377. PubMed, CrossRef
  80. Cremers NA, Lundvig DM, van Dalen SC, Schelbergen RF, van Lent PL, Szarek WA, Regan RF, Carels CE, Wagener FA. Curcumin-induced heme oxygenase-1 expression prevents H2O2-induced cell death in wild type and heme oxygenase-2 knockout adipose-derived mesenchymal stem cells. Int J Mol Sci. 2014;15(10):17974-17999. PubMed, PubMedCentral, CrossRef
  81. Mohan R, Glesson M, Greenhaff P. Biochemistry of muscles and physical training. K.: Olimpic Literature, 2001. 295 p.
  82. Dodd DA, Atkinson JB, Olson RD, Buck S, Cusack BJ, Fleischer S, Boucek RJ Jr. Doxorubicin cardiomyopathy is associated with a decrease in calcium release channel of the sarcoplasmic reticulum in a chronic rabbit model. J Clin Invest. 1993;91(4):1697-1705. PubMed, PubMedCentral, CrossRef
  83. Linnyk O, Drevytska T, Tarasova K, Portnichenko G, Dosenko V, Mankovska I. Doxorubicin-indused disturbances of cardiomyocyte contractile activity. Fiziol Zh. 2016;62(6):65-71. (In Ukrainian). PubMed, CrossRef
  84. Tanaka DM, O’Connell JL, Fabricio CG, Romano MMD, Campos EC, de Oliveira LFL, Schmidt A, Vieira de Carvalho EE, Simões MV. Efficacy of different cumulative doses of doxorubicin in the induction of a dilated cardiomyopathy model in rats. ABC Heart Fail Cardiomyop. 2022;2(3):242-249. CrossRef
  85. Linnik O, Gonchar O, Nosar V, Drevytska T, Kovalov O, Mankovska I. Effect of curcumin on mitochondrial function of cardiomyocytes with doxorubicin-induced oxidative stress. Fiziol Zh. 2017;63(1):10-16. (In Ukrainian). PubMed, CrossRef
  86. Shankar S, Srivastava RK. Involvement of Bcl-2 family members, phosphatidylinositol 3′-kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)-induced apoptosis in prostate cancer. Int J Oncol. 2007;30(4):905-918.  PubMed, CrossRef
  87. Nagorna O, Chekman IS, Horchakova NO, Yurzhenko NM. Effects of nicotinamide on lipid peroxidation in a model of doxorubicin-induced chronic cardiomyopathy. Medicines of Ukraine. 2004; (1-2): 116-119. (In Ukrainian).

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.