Ukr.Biochem.J. 2025; Volume 97, Issue 2, Mar-Apr, pp. 77-89

doi: https://doi.org/10.15407/ubj97.02.077

Chromium picolinate prevents the development of oxidative-nitrosative stress and restores endogenous H(2)S production in the rat brain under rotenone-induced toxicity

A. O. Mykytenko1*, I. S. Hrytsenko2, A. Y. Semenchuk2, M. V. Voroniuk2,
V. V. Kovpak2, O. Y. Akimov3, K. S. Neporada1

1Department of Bioorganic and Biological Chemistry,
Poltava State Medical University, Poltava, Ukraine;
2Medical Faculty №1, Poltava State Medical University, Poltava, Ukraine;
3Department of Pathophysiology, Poltava state medical university, Poltava, Ukraine;
*e-mail: mykytenkoandrej18@gmail.com

Received: 19 December 2024; Revised: 03 March 2025;
Accepted: 25 April 2025; Available on-line: 12 May 2025

Energy deficit, mitochondrial dysfunction and oxidative stress induced by rotenone may play a decisive role in the pathogenesis of neurodegenerative disorders. Chromium picolinate has shown neuroprotective activity and efficacy in the treatment of Alzheimer’s disease The effect of chromium picolinate on the brain under the conditions of rotenone influence has not been studied, and such data could shed light on the pathogenesis of neurodegenerative diseases. The aim of the study was to determine the effect of chromium picolinate on the indices of oxidative-nitrosative stress and the content of sulfide anion and sulfites in the brain homogenate under rotenone administration to rats. Experiments were performed on 24 white, sexually mature male Wistar rats. The animals were divided into 4 groups: control group; chromium picolinate group; rotenone group; group of combined exposure to chromium picolinate and rotenone. Chromium picolinate was administered orally at a dose of 80 μg/kg per day for 21 days. Rotenon was injected subcutaneously at a dose of 1.5 mg/kg every other day. The introduction of rotenone into the body of rats was accompanied by the development of oxidative-nitrosative stress mainly due to the increased activity of NO-synthase inducible isoform, and by the decrease in the content of H2S and SO32- in brain tissue. Oral administration of chromium picolinate against the background of rotenone administration prevents the development of oxidative-nitrosative stress in brain tissue by reducing the production of reactive oxygen and nitrogen forms, promotes the restoration of arginase activity and increases the content of H2S and SO32-.

Keywords: , , , , ,


References:

  1. Günaydin C, Çelik ZB, Bilge SS, Avci B, Kara N. SAHA attenuates rotenone-induced toxicity in primary microglia and HT-22 cells. Toxicol Ind Health. 2021;37(1):23-33. PubMed, CrossRef
  2. Roy T, Chatterjee A, Swarnakar S. Rotenone induced neurodegeneration is mediated via cytoskeleton degradation and necroptosis. Biochim Biophys Acta Mol Cell Res. 2023;1870(3):119417. PubMed, CrossRef
  3. Sherer TB, Richardson JR, Testa CM, Seo BB, Panov AV, Yagi T, Matsuno-Yagi A, Miller GW, Greenamyre JT. Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem. 2007;100(6):1469-1479. PubMed, PubMedCentral, CrossRef
  4. Buratta S, Chiaradia E, Tognoloni A, Gambelunghe A, Meschini C, Palmieri L, Muzi G, Urbanelli L, Emiliani C, Tancini B. Effect of Curcumin on Protein Damage Induced by Rotenone in Dopaminergic PC12 Cells. Int J Mol Sci. 2020;21(8):2761. PubMed, PubMedCentral, CrossRef
  5. Johnson ME, Bobrovskaya L. An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology. 2015;46:101-116. PubMed, CrossRef
  6. Chen T, Tan J, Wan Z, Zou Y, Afewerky HK, Zhang Z, Zhang T. Effects of Commonly Used Pesticides in China on the Mitochondria and Ubiquitin-Proteasome System in Parkinson’s Disease. Int J Mol Sci. 2017;18(12):2507. PubMed, PubMedCentral, CrossRef
  7. Kamat PK, Kalani A, Tyagi N. Role of hydrogen sulfide in brain synaptic remodeling. Methods Enzymol. 2015;555:207-229. PubMed, PubMedCentral, CrossRef
  8. Zhang J, Zhang S, Shan H, Zhang M. Biologic Effect of hydrogen sulfide and its role in traumatic brain injury. Oxid Med Cell Longev. 2020;2020:7301615. PubMed, PubMedCentral, CrossRef
  9. Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiol Rev. 2023;103(1):31-276. PubMed, CrossRef
  10. Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS, Cheung NS, Halliwell B, Moore PK. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem. 2004;90(3):765-768. PubMed, CrossRef
  11. Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology. 2002;180(1):5-22. PubMed, CrossRef
  12. Sahin K, Tuzcu M, Orhan C, Gencoglu H, Ulas M, Atalay M, Sahin N, Hayirli A, Komorowski JR. The effects of chromium picolinate and chromium histidinate administration on NF-κB and Nrf2/HO-1 pathway in the brain of diabetic rats. Biol Trace Elem Res. 2012;150(1-3):291-296.  PubMed, CrossRef
  13. Boiko DI, Shkodina AD, Hasan MM, Bardhan M, Kazmi SK, Chopra H, Bhutra P, Baig AA, Skrypnikov AM. Melatonergic receptors (Mt1/Mt2) as a potential additional target of novel drugs for depression. Neurochem Res. 2022;47(10):2909-2924. PubMed, PubMedCentral, CrossRef
  14. Franklin M, Odontiadis J. Effects of treatment with chromium picolinate on peripheral amino acid availability and brain monoamine function in the rat. Pharmacopsychiatry. 2003;36(5):176-180. PubMed, CrossRef
  15. Akhtar A, Dhaliwal J, Saroj P, Uniyal A, Bishnoi M, Sah SP. Chromium picolinate attenuates cognitive deficit in ICV-STZ rat paradigm of sporadic Alzheimer’s-like dementia via targeting neuroinflammatory and IRS-1/PI3K/AKT/GSK-3β pathway. Inflammopharmacology. 2020;28(2):385-400. PubMed, CrossRef
  16. Reading SA. Chromium picolinate. J Fla Med Assoc. 1996;83(1):29-31. PubMed
  17. Vincent JB. Is chromium(III) supplementation beneficial for dietary rodent models of prediabetes? J Trace Elem Med Biol. 2024;85:127482. PubMed, CrossRef
  18. Sahin K, Tuzcu M, Orhan C, Sahin N, Kucuk O, Ozercan IH, Juturu V, Komorowski JR. Anti-diabetic activity of chromium picolinate and biotin in rats with type 2 diabetes induced by high-fat diet and streptozotocin. Br J Nutr. 2013;110(2):197-205. PubMed, CrossRef
  19. Arab HH, Safar MM, Shahin NN. Targeting ROS-dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 pathways by dapagliflozin attenuates neuronal injury and motor dysfunction in rotenone-induced Parkinson’s disease rat model. ACS Chem Neurosci. 2021;12(4):689-703. PubMed, CrossRef
  20. Mykytenko A, Akimov O, Yeroshenko G, Neporada K. Phenformin attenuates the oxidative-nitrosative stress in the liver of rats under long-term ethanol administration. Ukr Biochem J. 2024;96(3):22-30. CrossRef
  21. Pletnov V, Tkachenko O, Akimov O, Mykytenko A. Effect of lipopolysaccharide on the development of oxidative-nitrosative stress in salivary glands and soft periodontal tissues of rats under conditions of water avoidance stress. Eur J Clin Exp Med. 2024;22(2):404-416. CrossRef
  22. Kostenko VO, Tsebrzhins’kii OI. Production of superoxide anion radical and nitric oxide in renal tissues sutured with different surgical suture material. Fiziol Zh. 2000;46(5):56-62. (In Ukrainian). PubMed
  23. Gérard-Monnier D, Erdelmeier I, Régnard K, Moze-Henry N, Yadan JC, Chaudière J. Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem Res Toxicol. 1998;11(10):1176-1183. PubMed, CrossRef
  24. Mykytenko AO, Akimov OY, Shevchenko OM, Neporada KS. Role of sulfide anion in the development of chronic alcoholic hepatitis under the conditions of modulation of adenosine monophosphate kinase – a correlational study. Eur J Clin Exp Med. 2023;21(3):567-575. CrossRef
  25. Abdel-Latif MS. New spectrophotometric method for sulfite determination. Anal Lett. 1994;27(13):2601-2614. CrossRef
  26. Akimov OYe, Kostenko VO. Functioning of nitric oxide cycle in gastric mucosa of rats under excessive combined intake of sodium nitrate and fluoride. Ukr Biochem J. 2016;88(6):70-75. CrossRef
  27. Gaston B, Reilly J, Drazen JM, Fackler J, Ramdev P, Arnelle D, Mullins ME, Sugarbaker DJ, Chee C, Singel DJ, Loscalzo J, Stamler JS. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc Natl Acad Sci USA. 1993;90(23):10957-10961. PubMed, PubMedCentral, CrossRef
  28. Gopi A, Anushree G, Devaraju KS. Spectrophotometric estimation of nitro tyrosine by azo – coupling reaction. Int J Pharma Bio Sci. 2014;5(1):269-277.
  29. Shi L, Liu B, Zhang X, Bu Y, Shen Z, Zou J, Chen Y. Cloning of Nitrate Reductase and Nitrite Reductase Genes and Their Functional Analysis in Regulating Cr(VI) Reduction in Ectomycorrhizal Fungus Pisolithus sp.1. Front Microbiol. 2022;13:926748. PubMed, PubMedCentral, CrossRef
  30. Yu C, Tang X, Li LS, Chai XL, Xiao R, Wu D, Tang CJ, Chai LY. The long-term effects of hexavalent chromium on anaerobic ammonium oxidation process: Performance inhibition, hexavalent chromium reduction and unexpected nitrite oxidation. Bioresour Technol. 2019;283:138-147. PubMed, CrossRef
  31. Tang S, Ye S, Ma Y, Liang Y, Liang N, Xiao F. Clusterin alleviates Cr(VI)-induced mitochondrial apoptosis in L02 hepatocytes via inhibition of Ca2+-ROS-Drp1-mitochondrial fission axis. Ecotoxicol Environ Saf. 2020;205:111326. PubMed, CrossRef
  32. Qiu D, Hu J, Zhang S, Cai W, Miao J, Li P, Jiang W. Fenugreek extract improves diabetes-induced endothelial dysfunction via the arginase 1 pathway. Food Funct. 2024;15(7):3446-3462. PubMed, CrossRef
  33. Koo BH, Won MH, Kim YM, Ryoo S. p32-Dependent p38 MAPK activation by arginase II downregulation contributes to endothelial nitric oxide synthase activation in HUVECs. Cells. 2020;9(2):392. PubMed, PubMedCentral, CrossRef
  34. Yang X, Shi Q, Wang X, Zhang T, Feng K, Wang G, Zhao J, Yuan X, Ren J. Melatonin-Induced Chromium Tolerance Requires Hydrogen Sulfide Signaling in Maize. Plants (Basel). 2024;13(13):1763. PubMed, PubMedCentral, CrossRef
  35. Kaya C, Ashraf M, Alyemeni MN, Rinklebe J, Ahmad P. Citric acid and hydrogen sulfide cooperate to mitigate chromium stress in tomato plants by modulating the ascorbate-glutathione cycle, chromium sequestration, and subcellular allocation of chromium. Environ Pollut. 2023;335:122292. PubMed, CrossRef
  36. Azar YO, Badawi GA, Zaki HF, Ibrahim SM. Agmatine-mediated inhibition of NMDA receptor expression and amelioration of dyskinesia via activation of Nrf2 and suppression of HMGB1/RAGE/TLR4/MYD88/NF-κB signaling cascade in rotenone lesioned rats. Life Sci. 2022;311(Pt A):121049.  PubMed, CrossRef
  37. Li J, Yu J, Guo J, Liu J, Wan G, Wei X, Yang X, Shi J. Nardostachys jatamansi and levodopa combination alleviates Parkinson’s disease symptoms in rats through activation of Nrf2 and inhibition of NLRP3 signaling pathways. Pharm Biol. 2023;61(1):1175-1185. PubMed, PubMedCentral, CrossRef
  38. Katila N, Bhurtel S, Park PH, Choi DY. Metformin attenuates rotenone-induced oxidative stress and mitochondrial damage via the AKT/Nrf2 pathway. Neurochem Int. 2021;148:105120. PubMed, CrossRef
  39. Ogle MM, Trevino R Jr, Schell J, Varmazyad M, Horikoshi N, Gius D. Manganese superoxide dismutase acetylation and regulation of protein structure in breast cancer biology and therapy. Antioxidants (Basel). 2022;11(4):635. PubMed, PubMedCentral, CrossRef
  40. Kwok WT, Kwak HA, Andreazza AC. N-acetylcysteine modulates rotenone-induced mitochondrial сomplex I dysfunction in THP-1 cells. Mitochondrion. 2023;72:1-10. PubMed, CrossRef
  41. Mastella MH, Roggia I, Turra BO, Teixeira CF, Assmann CE, Morais-Pinto L, Vidal T, Melazzo C, Jung IEDC, Barbisan F, da Cruz IBM. Superoxide-imbalance pharmacologically induced by rotenone triggers behavioral, neural, and inflammatory alterations in the Eisenia fetida earthworm. Neuroscience. 2022;502:25-40. PubMed, CrossRef
  42. Akinmoladun AC, Famusiwa CD, Josiah SS, Lawal AO, Olaleye MT, Akindahunsi AA. Dihydroquercetin improves rotenone-induced Parkinsonism by regulating NF-κB-mediated inflammation pathway in rats. J Biochem Mol Toxicol. 2022;36(5):e23022. PubMed, CrossRef
  43. Wang Q, Ruan Z, Jing L, Guo Z, Zhang X, Liu J, Tian L, Sun W, Song S, Hong JS, Shih YI, Hou L, Wang Q. Complement receptor 3-mediated neurotoxic glial activation contributes to rotenone-induced cognitive decline in mice. Ecotoxicol Environ Saf. 2023;266:115550. PubMed, PubMedCentral, CrossRef
  44. Salvagno M, Sterchele ED, Zaccarelli M, Mrakic-Sposta S, Welsby IJ, Balestra C, Taccone FS. Oxidative stress and cerebral vascular tone: the role of reactive oxygen and nitrogen species. Int J Mol Sci. 2024;25(5):3007.  PubMed, PubMedCentral, CrossRef
  45. Du C, Jin M, Hong Y, Li Q, Wang XH, Xu JM, Wang F, Zhang Y, Jia J, Liu CF, Hu LF. Downregulation of cystathionine β-synthase/hydrogen sulfide contributes to rotenone-induced microglia polarization toward M1 type. Biochem Biophys Res Commun. 2014;451(2):239-245. PubMed, CrossRef
  46. Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-synthase: molecular regulation and pharmacological inhibition. Biomolecules. 2020;10(5):697. CrossRef
  47. Ma Y, Zhang Y, Xiao Y, Xiao F. Increased mitochondrial fragmentation mediated by dynamin-related protein 1 contributes to hexavalent chromium-induced mitochondrial respiratory chain complex I-dependent cytotoxicity. Toxics. 2020;8(3):50. PubMed, PubMedCentral, CrossRef
  48. Majewski M, Gromadziński L, Cholewińska E, Ognik K, Fotschki B, Juśkiewicz J. Dietary effects of chromium picolinate and chromium nanoparticles in Wistar rats fed with a high-fat, low-fiber diet: the role of fat normalization. Nutrients. 2022;14(23):5138. PubMed, PubMedCentral, CrossRef
  49. Jin Y, Liu L, Zhang S, Tao B, Tao R, He X, Qu L, Huang J, Wang X, Fu Z. Chromium alters lipopolysaccharide-induced inflammatory responses both in vivo and in vitro. Chemosphere. 2016;148:436-443. PubMed, CrossRef
  50. Zhou J, Cao L, Feng X, Zhou B, Li L. Octreotide-mediated neurofunctional recovery in rats following traumatic brain injury. Role of H2S, Nrf2 and TNF-α. Acta Cir Bras. 2022;36(12):e361204. PubMed, PubMedCentral, CrossRef
  51. Danışman B, Akçay G, Gökçek-Saraç Ç, Kantar D, Aslan M, Derin N. The role of acetylcholine on the effects of different doses of sulfite in learning and memory. Neurochem Res. 2022;47(11):3331-3343. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.