Ukr.Biochem.J. 2025; Volume 97, Issue 2, Mar-Apr, pp. 77-89
doi: https://doi.org/10.15407/ubj97.02.077
Chromium picolinate prevents the development of oxidative-nitrosative stress and restores endogenous H(2)S production in the rat brain under rotenone-induced toxicity
A. O. Mykytenko1*, I. S. Hrytsenko2, A. Y. Semenchuk2, M. V. Voroniuk2,
V. V. Kovpak2, O. Y. Akimov3, K. S. Neporada1
1Department of Bioorganic and Biological Chemistry,
Poltava State Medical University, Poltava, Ukraine;
2Medical Faculty №1, Poltava State Medical University, Poltava, Ukraine;
3Department of Pathophysiology, Poltava state medical university, Poltava, Ukraine;
*e-mail: mykytenkoandrej18@gmail.com
Received: 19 December 2024; Revised: 03 March 2025;
Accepted: 25 April 2025; Available on-line: 12 May 2025
Energy deficit, mitochondrial dysfunction and oxidative stress induced by rotenone may play a decisive role in the pathogenesis of neurodegenerative disorders. Chromium picolinate has shown neuroprotective activity and efficacy in the treatment of Alzheimer’s disease The effect of chromium picolinate on the brain under the conditions of rotenone influence has not been studied, and such data could shed light on the pathogenesis of neurodegenerative diseases. The aim of the study was to determine the effect of chromium picolinate on the indices of oxidative-nitrosative stress and the content of sulfide anion and sulfites in the brain homogenate under rotenone administration to rats. Experiments were performed on 24 white, sexually mature male Wistar rats. The animals were divided into 4 groups: control group; chromium picolinate group; rotenone group; group of combined exposure to chromium picolinate and rotenone. Chromium picolinate was administered orally at a dose of 80 μg/kg per day for 21 days. Rotenon was injected subcutaneously at a dose of 1.5 mg/kg every other day. The introduction of rotenone into the body of rats was accompanied by the development of oxidative-nitrosative stress mainly due to the increased activity of NO-synthase inducible isoform, and by the decrease in the content of H2S and SO32- in brain tissue. Oral administration of chromium picolinate against the background of rotenone administration prevents the development of oxidative-nitrosative stress in brain tissue by reducing the production of reactive oxygen and nitrogen forms, promotes the restoration of arginase activity and increases the content of H2S and SO32-.
Keywords: chromium picolinate, H(2)S, NO-synthase, oxidative-nitrosative stress, rat brain, rotenon
References:
- Günaydin C, Çelik ZB, Bilge SS, Avci B, Kara N. SAHA attenuates rotenone-induced toxicity in primary microglia and HT-22 cells. Toxicol Ind Health. 2021;37(1):23-33. PubMed, CrossRef
- Roy T, Chatterjee A, Swarnakar S. Rotenone induced neurodegeneration is mediated via cytoskeleton degradation and necroptosis. Biochim Biophys Acta Mol Cell Res. 2023;1870(3):119417. PubMed, CrossRef
- Sherer TB, Richardson JR, Testa CM, Seo BB, Panov AV, Yagi T, Matsuno-Yagi A, Miller GW, Greenamyre JT. Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem. 2007;100(6):1469-1479. PubMed, PubMedCentral, CrossRef
- Buratta S, Chiaradia E, Tognoloni A, Gambelunghe A, Meschini C, Palmieri L, Muzi G, Urbanelli L, Emiliani C, Tancini B. Effect of Curcumin on Protein Damage Induced by Rotenone in Dopaminergic PC12 Cells. Int J Mol Sci. 2020;21(8):2761. PubMed, PubMedCentral, CrossRef
- Johnson ME, Bobrovskaya L. An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology. 2015;46:101-116. PubMed, CrossRef
- Chen T, Tan J, Wan Z, Zou Y, Afewerky HK, Zhang Z, Zhang T. Effects of Commonly Used Pesticides in China on the Mitochondria and Ubiquitin-Proteasome System in Parkinson’s Disease. Int J Mol Sci. 2017;18(12):2507. PubMed, PubMedCentral, CrossRef
- Kamat PK, Kalani A, Tyagi N. Role of hydrogen sulfide in brain synaptic remodeling. Methods Enzymol. 2015;555:207-229. PubMed, PubMedCentral, CrossRef
- Zhang J, Zhang S, Shan H, Zhang M. Biologic Effect of hydrogen sulfide and its role in traumatic brain injury. Oxid Med Cell Longev. 2020;2020:7301615. PubMed, PubMedCentral, CrossRef
- Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiol Rev. 2023;103(1):31-276. PubMed, CrossRef
- Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS, Cheung NS, Halliwell B, Moore PK. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem. 2004;90(3):765-768. PubMed, CrossRef
- Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology. 2002;180(1):5-22. PubMed, CrossRef
- Sahin K, Tuzcu M, Orhan C, Gencoglu H, Ulas M, Atalay M, Sahin N, Hayirli A, Komorowski JR. The effects of chromium picolinate and chromium histidinate administration on NF-κB and Nrf2/HO-1 pathway in the brain of diabetic rats. Biol Trace Elem Res. 2012;150(1-3):291-296. PubMed, CrossRef
- Boiko DI, Shkodina AD, Hasan MM, Bardhan M, Kazmi SK, Chopra H, Bhutra P, Baig AA, Skrypnikov AM. Melatonergic receptors (Mt1/Mt2) as a potential additional target of novel drugs for depression. Neurochem Res. 2022;47(10):2909-2924. PubMed, PubMedCentral, CrossRef
- Franklin M, Odontiadis J. Effects of treatment with chromium picolinate on peripheral amino acid availability and brain monoamine function in the rat. Pharmacopsychiatry. 2003;36(5):176-180. PubMed, CrossRef
- Akhtar A, Dhaliwal J, Saroj P, Uniyal A, Bishnoi M, Sah SP. Chromium picolinate attenuates cognitive deficit in ICV-STZ rat paradigm of sporadic Alzheimer’s-like dementia via targeting neuroinflammatory and IRS-1/PI3K/AKT/GSK-3β pathway. Inflammopharmacology. 2020;28(2):385-400. PubMed, CrossRef
- Reading SA. Chromium picolinate. J Fla Med Assoc. 1996;83(1):29-31. PubMed
- Vincent JB. Is chromium(III) supplementation beneficial for dietary rodent models of prediabetes? J Trace Elem Med Biol. 2024;85:127482. PubMed, CrossRef
- Sahin K, Tuzcu M, Orhan C, Sahin N, Kucuk O, Ozercan IH, Juturu V, Komorowski JR. Anti-diabetic activity of chromium picolinate and biotin in rats with type 2 diabetes induced by high-fat diet and streptozotocin. Br J Nutr. 2013;110(2):197-205. PubMed, CrossRef
- Arab HH, Safar MM, Shahin NN. Targeting ROS-dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 pathways by dapagliflozin attenuates neuronal injury and motor dysfunction in rotenone-induced Parkinson’s disease rat model. ACS Chem Neurosci. 2021;12(4):689-703. PubMed, CrossRef
- Mykytenko A, Akimov O, Yeroshenko G, Neporada K. Phenformin attenuates the oxidative-nitrosative stress in the liver of rats under long-term ethanol administration. Ukr Biochem J. 2024;96(3):22-30. CrossRef
- Pletnov V, Tkachenko O, Akimov O, Mykytenko A. Effect of lipopolysaccharide on the development of oxidative-nitrosative stress in salivary glands and soft periodontal tissues of rats under conditions of water avoidance stress. Eur J Clin Exp Med. 2024;22(2):404-416. CrossRef
- Kostenko VO, Tsebrzhins’kii OI. Production of superoxide anion radical and nitric oxide in renal tissues sutured with different surgical suture material. Fiziol Zh. 2000;46(5):56-62. (In Ukrainian). PubMed
- Gérard-Monnier D, Erdelmeier I, Régnard K, Moze-Henry N, Yadan JC, Chaudière J. Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem Res Toxicol. 1998;11(10):1176-1183. PubMed, CrossRef
- Mykytenko AO, Akimov OY, Shevchenko OM, Neporada KS. Role of sulfide anion in the development of chronic alcoholic hepatitis under the conditions of modulation of adenosine monophosphate kinase – a correlational study. Eur J Clin Exp Med. 2023;21(3):567-575. CrossRef
- Abdel-Latif MS. New spectrophotometric method for sulfite determination. Anal Lett. 1994;27(13):2601-2614. CrossRef
- Akimov OYe, Kostenko VO. Functioning of nitric oxide cycle in gastric mucosa of rats under excessive combined intake of sodium nitrate and fluoride. Ukr Biochem J. 2016;88(6):70-75. CrossRef
- Gaston B, Reilly J, Drazen JM, Fackler J, Ramdev P, Arnelle D, Mullins ME, Sugarbaker DJ, Chee C, Singel DJ, Loscalzo J, Stamler JS. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc Natl Acad Sci USA. 1993;90(23):10957-10961. PubMed, PubMedCentral, CrossRef
- Gopi A, Anushree G, Devaraju KS. Spectrophotometric estimation of nitro tyrosine by azo – coupling reaction. Int J Pharma Bio Sci. 2014;5(1):269-277.
- Shi L, Liu B, Zhang X, Bu Y, Shen Z, Zou J, Chen Y. Cloning of Nitrate Reductase and Nitrite Reductase Genes and Their Functional Analysis in Regulating Cr(VI) Reduction in Ectomycorrhizal Fungus Pisolithus sp.1. Front Microbiol. 2022;13:926748. PubMed, PubMedCentral, CrossRef
- Yu C, Tang X, Li LS, Chai XL, Xiao R, Wu D, Tang CJ, Chai LY. The long-term effects of hexavalent chromium on anaerobic ammonium oxidation process: Performance inhibition, hexavalent chromium reduction and unexpected nitrite oxidation. Bioresour Technol. 2019;283:138-147. PubMed, CrossRef
- Tang S, Ye S, Ma Y, Liang Y, Liang N, Xiao F. Clusterin alleviates Cr(VI)-induced mitochondrial apoptosis in L02 hepatocytes via inhibition of Ca2+-ROS-Drp1-mitochondrial fission axis. Ecotoxicol Environ Saf. 2020;205:111326. PubMed, CrossRef
- Qiu D, Hu J, Zhang S, Cai W, Miao J, Li P, Jiang W. Fenugreek extract improves diabetes-induced endothelial dysfunction via the arginase 1 pathway. Food Funct. 2024;15(7):3446-3462. PubMed, CrossRef
- Koo BH, Won MH, Kim YM, Ryoo S. p32-Dependent p38 MAPK activation by arginase II downregulation contributes to endothelial nitric oxide synthase activation in HUVECs. Cells. 2020;9(2):392. PubMed, PubMedCentral, CrossRef
- Yang X, Shi Q, Wang X, Zhang T, Feng K, Wang G, Zhao J, Yuan X, Ren J. Melatonin-Induced Chromium Tolerance Requires Hydrogen Sulfide Signaling in Maize. Plants (Basel). 2024;13(13):1763. PubMed, PubMedCentral, CrossRef
- Kaya C, Ashraf M, Alyemeni MN, Rinklebe J, Ahmad P. Citric acid and hydrogen sulfide cooperate to mitigate chromium stress in tomato plants by modulating the ascorbate-glutathione cycle, chromium sequestration, and subcellular allocation of chromium. Environ Pollut. 2023;335:122292. PubMed, CrossRef
- Azar YO, Badawi GA, Zaki HF, Ibrahim SM. Agmatine-mediated inhibition of NMDA receptor expression and amelioration of dyskinesia via activation of Nrf2 and suppression of HMGB1/RAGE/TLR4/MYD88/NF-κB signaling cascade in rotenone lesioned rats. Life Sci. 2022;311(Pt A):121049. PubMed, CrossRef
- Li J, Yu J, Guo J, Liu J, Wan G, Wei X, Yang X, Shi J. Nardostachys jatamansi and levodopa combination alleviates Parkinson’s disease symptoms in rats through activation of Nrf2 and inhibition of NLRP3 signaling pathways. Pharm Biol. 2023;61(1):1175-1185. PubMed, PubMedCentral, CrossRef
- Katila N, Bhurtel S, Park PH, Choi DY. Metformin attenuates rotenone-induced oxidative stress and mitochondrial damage via the AKT/Nrf2 pathway. Neurochem Int. 2021;148:105120. PubMed, CrossRef
- Ogle MM, Trevino R Jr, Schell J, Varmazyad M, Horikoshi N, Gius D. Manganese superoxide dismutase acetylation and regulation of protein structure in breast cancer biology and therapy. Antioxidants (Basel). 2022;11(4):635. PubMed, PubMedCentral, CrossRef
- Kwok WT, Kwak HA, Andreazza AC. N-acetylcysteine modulates rotenone-induced mitochondrial сomplex I dysfunction in THP-1 cells. Mitochondrion. 2023;72:1-10. PubMed, CrossRef
- Mastella MH, Roggia I, Turra BO, Teixeira CF, Assmann CE, Morais-Pinto L, Vidal T, Melazzo C, Jung IEDC, Barbisan F, da Cruz IBM. Superoxide-imbalance pharmacologically induced by rotenone triggers behavioral, neural, and inflammatory alterations in the Eisenia fetida earthworm. Neuroscience. 2022;502:25-40. PubMed, CrossRef
- Akinmoladun AC, Famusiwa CD, Josiah SS, Lawal AO, Olaleye MT, Akindahunsi AA. Dihydroquercetin improves rotenone-induced Parkinsonism by regulating NF-κB-mediated inflammation pathway in rats. J Biochem Mol Toxicol. 2022;36(5):e23022. PubMed, CrossRef
- Wang Q, Ruan Z, Jing L, Guo Z, Zhang X, Liu J, Tian L, Sun W, Song S, Hong JS, Shih YI, Hou L, Wang Q. Complement receptor 3-mediated neurotoxic glial activation contributes to rotenone-induced cognitive decline in mice. Ecotoxicol Environ Saf. 2023;266:115550. PubMed, PubMedCentral, CrossRef
- Salvagno M, Sterchele ED, Zaccarelli M, Mrakic-Sposta S, Welsby IJ, Balestra C, Taccone FS. Oxidative stress and cerebral vascular tone: the role of reactive oxygen and nitrogen species. Int J Mol Sci. 2024;25(5):3007. PubMed, PubMedCentral, CrossRef
- Du C, Jin M, Hong Y, Li Q, Wang XH, Xu JM, Wang F, Zhang Y, Jia J, Liu CF, Hu LF. Downregulation of cystathionine β-synthase/hydrogen sulfide contributes to rotenone-induced microglia polarization toward M1 type. Biochem Biophys Res Commun. 2014;451(2):239-245. PubMed, CrossRef
- Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-synthase: molecular regulation and pharmacological inhibition. Biomolecules. 2020;10(5):697. CrossRef
- Ma Y, Zhang Y, Xiao Y, Xiao F. Increased mitochondrial fragmentation mediated by dynamin-related protein 1 contributes to hexavalent chromium-induced mitochondrial respiratory chain complex I-dependent cytotoxicity. Toxics. 2020;8(3):50. PubMed, PubMedCentral, CrossRef
- Majewski M, Gromadziński L, Cholewińska E, Ognik K, Fotschki B, Juśkiewicz J. Dietary effects of chromium picolinate and chromium nanoparticles in Wistar rats fed with a high-fat, low-fiber diet: the role of fat normalization. Nutrients. 2022;14(23):5138. PubMed, PubMedCentral, CrossRef
- Jin Y, Liu L, Zhang S, Tao B, Tao R, He X, Qu L, Huang J, Wang X, Fu Z. Chromium alters lipopolysaccharide-induced inflammatory responses both in vivo and in vitro. Chemosphere. 2016;148:436-443. PubMed, CrossRef
- Zhou J, Cao L, Feng X, Zhou B, Li L. Octreotide-mediated neurofunctional recovery in rats following traumatic brain injury. Role of H2S, Nrf2 and TNF-α. Acta Cir Bras. 2022;36(12):e361204. PubMed, PubMedCentral, CrossRef
- Danışman B, Akçay G, Gökçek-Saraç Ç, Kantar D, Aslan M, Derin N. The role of acetylcholine on the effects of different doses of sulfite in learning and memory. Neurochem Res. 2022;47(11):3331-3343. PubMed, CrossRef
