Ukr.Biochem.J. 2025; Volume 97, Issue 3, May-Jun, pp. 96-107

doi: https://doi.org/10.15407/ubj97.03.096

Influence of heterometallic Ge(IV) – 3d-metals complexes on microbial rhamnosidase, galactosidase and protease activity

O. V. Gudzenko1*, L. D. Varbanets1, I. I. Seifullina2,
О. E. Martsynko2, O. A. Finik3, K. K. Tsymbaliuk2,3

1Zabolotny Institute of Microbiology and Virology,
National Academy of Sciences of Ukraine, Kyiv;
2Odesa I. I. Mechnikov National University, Ukraine;
3LLC “Inspectorat Ukraine”, Ukraine;
*e-mail: alena.gudzenko81@gmail.com

Received: 18 March 2025; Revised: 12 May 2025;
Accepted: 11 June 2025; Available on-line: 07 July 2025

In recent years, the attention of researchers has been attracted by coordination compounds of germanium with various bioligands, which may be used both as activator or inhibitor of enzymes. The aim of the work was to investigate the effect of new heterometallic Ge(IV) – 3d-metals complexes with 1-hydro­xyethane-1,1-diphosphonic acid and 1,10-phenanthroline on the activity of purified α-L-rhamnosidases produced by Eupenicillium erubescens, Penicillium tardum, Penicillium restrictum, Cryptococcus albidus, α-galactosidase of P. restrictum and proteases with elastolytic and fibrinogenolytic activity of Bacillus sp. The studied compounds (0,1% concentration) activate α-L-rhamnosidase differently depending on its producer. Thus, the activity of α-L-rhamnosidase of E. erubescens was stimulated with [Co(phen)3]4[Ge6(μ-OH)4(μ-O)2(μ-hedp)6]·2СН3СООН·30H2O by 200%, of Penicillium tardum – with [Zn(phen)2(H2O)2]2[Zn(phen)(H2O)4]2[Ge6(μ-OH)4(μ-O)2(μ-hedp)6]·18H2O by 200%, of Penicillium restrictum – with [Ni(phen)3]4[Ge6(μ-OH)4(μ-O)2(μ-hedp)6]·2СН3СООН·26H2O by 67%, of Cryptococcus albidus – wih [Co(phen)3]4[Ge6(μ-OH)4(μ-O)2(μ-hedp)6]·2СН3СООН·30H2O by 40%. The α-galactosidase of Penicillium restrictum was not affected by the investigated compounds. Bacillus sp. IMV B-7883 elastase was activated with [Co(phen)3]4[Ge6(μ-OH)4(μ-O)2(μ-hedp)6]·2СН3СООН·30H2O by 70%, but was totally inhibited with [Fe(phen)3]4[Ge6(μ-OH)4(μ-O)2(μ-hedp)6]·20H2O. The compounds that showed the greatest 200% stimulating effect on the fibrinogenolytic activity of Bacillus sp. IMV B-7883 were [Fe(phen)3]4[Ge6(μ-OH)4(μ-O)2(μ-hedp)6]·20H2O and [Zn(phen)2(H2O)2]2[Zn(phen)(H2O)4]2[Ge6(μ-OH)4(μ-O)2(μ-hedp)6]·18H2O.

Keywords: , , , , , , , ,


References:

  1. Yadav V, Yadav PK, Yadav S, Yadav KDS. Alpha-L-rhamnosidase: a review. Proc Biochem. 2010;45(8):1226-1235. CrossRef
  2. Kushwaha A, Kesarwani P, Kushwaha R. Enzymes used for sustainable wet processing in textile industry. Int J Eng Technol Manag Sci. 2024;8(38):276-283. CrossRef
  3. Varbanets LD, Matseliukh EV. Peptidases of microorganisms and methods of their investigations. K: Naukova Dumka, 2014. 323 p.
  4. Çelik E, Özdemir M, Köksoy B, Taskin-Tok T, Taslimi P, Sadeghian N, Yalçın B. New Coumarin−Thiosemicarbazone Based Zn(II), Ni(II) and Co(II) Metal Complexes: Investigation of Cholinesterase, α‐Amylase, and α‐Glucosidase Enzyme Activities, and Molecular Docking Studies. ChemistrySelect. 2023;8 (38):e202301786. CrossRef
  5. Rambabu D, Sharma S, Mayank, Singh N, Shagun, Pooja. Zn‐Phenanthroline‐Dicarboxylate Complex: A Dual Inhibitor of COX‐2 and 5‐LOX Enzymes. ChemistrySelect. 2024;9(23):e202400310. CrossRef
  6. Dunn CJ, Fitton A, Sorkin EM. Etidronic acid. A review of its pharmacological properties and therapeutic efficacy in resorptive bone disease. Drugs Aging. 1994;5(6):446-474. PubMed, CrossRef
  7. Povoroznyuk VV, Grygorieva NV, Pekhnyo VI, Resch H, Kozachkova OM, Tsaryk NV. Etidronic acid and its calcium-comprising complexes in the treatment of experimental osteoporosis in estrogen-deficient rats. J Miner Stoffwechs uskuloskelet Erkrank. 2018;25:7-12. CrossRef
  8. Luo X, Sun J, Kong D, Lei Y, Gong F, Zhang T, Shen Z, Wang K, Luo H, Xu Y. The role of germanium in diseases: exploring its important biological effects. J Transl Med. 2023;21(1):795. PubMed, PubMed, CrossRef
  9. Afanasenko E, Seifullina I, Martsinko E, Konup L, Fizer M, Gudzenko O, Borzova N. Supramolecular Salts of Fe(II)/Co(II)/Ni(II)/Cu(II)/Zn(II) 1,10-Phenanthroline Cations and Similar Complex Tartratostannate(IV) Anions: From Structural Features to Antimicrobial Activity and Enzyme Activation. ChemistrySelect. 2022;7(12): e202200280. CrossRef
  10. Gudzenko OV, Varbanets LD. Purification and physico-chemical properties of Eupenicillium erubescens alpha-L-rhamnosidase. Mikrobiol Z. 2012;74(2):14-21. (In Russian). PubMed
  11. Gudzenko OV, Varbanets LD. Purification and physico-chemical properties of Penicillium tardum α-L-rhamnosidase. Mikrobiol Z. 2016;78(1):13-22. (In Ukrainian). PubMed
  12. Gudzenko OV, Varbanets LD. Purification and physico-chemical properties of Cryptococcus albidus 1001 α-L-rhamnosidase. Mikrobiol Z. 2012;74(6):16-23. (In Russian). PubMed
  13. Gudzenko OV., Varbanets LD. Isolation and characterization of Bacillus sp. IMV B-7883 proteases. Ukr Biochem J. 2023;95(6):98-107. CrossRef
  14. Chaplin ME, Kennedy JE. (Eds.) Carbohydrate analysis: a practical approach. Washington, Oxford: IRL Press, 1986. CrossRef
  15. Davis WB. Determination of Flavanones in Citrus Fruits. Anal Chem. 1947;19(7):476-478. CrossRef
  16. AlShaikh-Mubarak GA, Kotb E, Alabdalall AH, Aldayel MF. A survey of elastase-producing bacteria and characteristics of the most potent producer, Priestia megaterium gasm32. PLoS One. 2023;18(3):e0282963. PubMed, PubMed, CrossRef
  17. Masada M. Determination of the thrombolytic activity of Natto extract. Food Style. 2004;8(1):92-95.
  18. Tsymbaliuk K, Martsynko О, Dyakonenko V, Finik О, Seifullina I, Shishkina S. Synthesis and structure of heterometallic multiligand Ge(IV) – 3d-metals complexes with 1-hydroxyethane-1,1-diphosphonic acid and 1,10-phenanthroline. Chem J Moldova. 2024;19(2):28-35. CrossRef
  19. Solanki P, Putatunda C, Kumar A, Bhatia R, Walia A. Microbial proteases: ubiquitous enzymes with innumerable uses. 3 Biotech. 2021;11(10):428. PubMed, PubMed, CrossRef
  20. Razzaq A, Shamsi S, Ali A, Ali Q, Sajjad M, Malik A, Ashraf M. Microbial Proteases Applications. Front Bioeng Biotechnol. 2019;7:110. PubMed, PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.