Ukr.Biochem.J. 2025; Volume 97, Issue 3, May-Jun, pp. 80-95

doi: https://doi.org/10.15407/ubj97.03.080

Isolation, characterization and antioxidant activity of fibrinogen-like protein-1 from serum and synovial fluid of patients with rheumatoid arthritis

Abdulsattar J. Abdullah, Zahraa M. A. Hamodat*

Department of Chemistry, College of Science, University of Mosul, Iraq;
*e-mail: zahraahamodat@uomosul.edu.iq

Received: 20 April 2025; Revised: 01 June 2025;
Accepted: 11 June 2025; Available on-line: 07 July 2025

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and oxidative stress. Fibrinogen-like protein-1 (FGL1) has been implicated in immune regulation, but its antioxidant role under inflammatory conditions remains underexplored. This study aimed to isolate and purify FGL1 from the serum of healthy controls and from the serum and synovial fluid from inflamed joints of RA patients, and to assess its antioxidant capacity. Purification included ammonium sulfate precipitation (65%), dialysis, and gel filtration chromatography (Sephadex G-75), SDS-PAGE and HPLC. Antioxidant activity was evaluated by DPPH radical scavenging and IC50 calculation. SDS-PAGE and HPLC analysis confirmed the successful isolation, identity and high purity of FGL1 from all samples, the protein molecular weight ranged from 68 to 70 kDa. The DPPH assay showed that FGL1 isolated from synovial fluid of RA patients had the highest antioxidant activity (IC50 = 2.124 ng/ml), followed by RA serum (2.172 ng/ml) and control serum (2.798 ng/ml). These results indicate the dual role of FGL1 protein in immune response and oxidative balance, making it a promising biomarker and potential therapeutic target in rheumatoid arthritis.

Keywords: , , , , , ,


References:

  1. Chatterjee A, Jayaprakasan M, Chakrabarty AK, Lakkaniga NR, Bhatt BN, Banerjee D, Narwaria A, Katiyar CK, Dubey SK. Comprehensive insights into rheumatoid arthritis: Pathophysiology, current therapies and herbal alternatives for effective disease management. Phytother Res. 2024;38(6):2764-2799. PubMed, CrossRef
  2. Xiong Y, Song X, Sheng X, Wu J, Chang X, Ren T, Cao J, Cheng T, Wang M. A review of Janus kinase/signal transducer and activator of transcription signaling and cytokines in the pain mechanism of rheumatoid arthritis. Eur J Inflam. 2023;21:1721727X231197498. CrossRef
  3. Alivernini S, Firestein GS, McInnes IB. The pathogenesis of rheumatoid arthritis. Immunity. 2022;55(12):2255-2270. PubMed, CrossRef
  4. Kondo N, Kanai T, Okada M. Rheumatoid arthritis and reactive oxygen species: a review. Curr Issues Mol Biol. 2023;45(4):3000-3015. PubMed, PubMedCentral, CrossRef
  5. Wang X, Fan D, Cao X, Ye Q, Wang Q, Zhang M, Xiao C. The role of reactive oxygen species in the rheumatoid arthritis-associated synovial microenvironment. Antioxidants (Basel). 2022;11(6):1153. PubMed, PubMedCentral, CrossRef
  6. Jiang H, Ji P, Shang X, Zhou Y. Connection between osteoarthritis and nitric oxide: from pathophysiology to therapeutic target. Molecules. 2023;28(4):1683. PubMed, PubMedCentral, CrossRef
  7. Chen J, Wu L, Li Y. FGL1 and FGL2: emerging regulators of liver health and disease. Biomark Res. 2024;12(1):53. PubMed, PubMedCentral, CrossRef
  8.  Zamudio-Cuevas Y, Martínez-Flores K, Martínez-Nava GA, Clavijo-Cornejo D, Fernández-Torres J, Sánchez-Sánchez R. Rheumatoid arthritis and oxidative stress. Cell Mol Biol (Noisy-le-grand). 2022;68(6):174-184. PubMed, CrossRef
  9. Nakachi S, Sumitomo S, Tsuchida Y, Tsuchiya H, Kono M, Kato R, Sakurai K, Hanata N, Nagafuchi Y, Tateishi S, Kanda H, Okamura T, Yamamoto K, Fujio K. Interleukin-10-producing LAG3+ regulatory T cells are associated with disease activity and abatacept treatment in rheumatoid arthritis. Arthritis Res Ther. 2017;19(1):97. PubMed, PubMedCentral, CrossRef
  10. Hanlon MM, Canavan M, Barker BE, Fearon U. Metabolites as drivers and targets in rheumatoid arthritis. Clin Exp Immunol. 2022;208(2):167-180. PubMed, PubMedCentral, CrossRef
  11. Taha MA, Hamodat ZMAA. The physiological role of the hormone adropin and its relationship to oxidative stress in patients with degenerative arthritis. Basrah J Sci. 2024;42(2):221-236.
  12. Hamodat ZMA. Study of serum adenosine deaminase-2 (ADA-2) activity in rheumatoid arthritis. Basrah J Sci. 2021;39(1):119-134.
  13. Ranjini HS, Udupa EG Padmanabha, Kamath SU, Setty M, Hadapad B. Adv Sci Lett. 2017;2(3):1889-1891. CrossRef
  14. Hamodat ZMAA, Abdulwahhab HH, Hamodat ARMT. Alpha-L-fucosidase as a putative prognostic biomarker in breast cancer. Ukr Biochem J. 2024;96(3):57-65. CrossRef
  15. Barros RM, Ferreira CA, Silv SV, Malcata FX. Quantitative studies on the enzymatic hydrolysis of milk proteins brought about by cardosins precipitated by ammonium sulfate. Enzyme Microb Technol. 2001;29(8-9):541-547. CrossRef
  16. Hamodat ZMA A. Properties of alpha-L-fucosidase for serum of patients with hepatocellular cancer and cytotoxicity on some cancer cell lines. Ukr Biochem J. 2021;93(6):76-86. CrossRef
  17. Phan P, Sonnaila S, Ternier G, Edirisinghe O, Okoto PS, Kumar TKS. Overexpression and purification of mitogenic and metabolic fibroblast growth factors. Methods Mol Biol. 2024;2762:151-181. PubMed, PubMedCentral, CrossRef
  18. Ó’Fágáin C, Colliton K. Storage and lyophilization of pure proteins. Methods Mol Biol. 2023;2699:421-475. PubMed, CrossRef
  19. Nagatomo S, Kitagawa T, Nagai M. Roles of Fe-histidine bonds in stability of hemoglobin: recognition of protein flexibility by Q Sepharose. Biophys J. 2021;120(13):2734-2745. PubMed, PubMedCentral, CrossRef
  20. Das L, Murthy V, Varma AK. Comprehensive Analysis of Low Molecular Weight Serum Proteome Enrichment for Mass Spectrometric Studies. ACS Omega. 2020;5(44):28877-28888. PubMed, PubMedCentral, CrossRef
  21. Barrientos RC, Singh AN, Ukaegbu O, Hemida M, Wang H, Haidar Ahmad I, Hu H, Dunn ZD, Appiah-Amponsah E, Regalado EL. Two-Dimensional SEC-SEC-UV-MALS-dRI Workflow for Streamlined Analysis and Characterization of Biopharmaceuticals. Anal Chem. 2024;96(12):4960-4968. PubMed, CrossRef
  22. Matsumoto H, Haniu H, Komori N. Determination of protein molecular weights on SDS-PAGE. Methods Mol Biol. 2019;1855:101-105.
    PubMed, CrossRef
  23. Kielkopf CL, Bauer W, Urbatsch IL. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins. Cold Spring Harb Protoc. 2021;2021(12).
    PubMed, CrossRef
  24. Wiesner R, Scheller C, Krebs F, Wätzig H, Oltmann-Norden I. A comparative study of CE-SDS, SDS-PAGE, and simple western: influences of sample preparation on molecular weight determination of proteins. Electrophoresis. 2021;42(3):206-218. PubMed, CrossRef
  25. Dobó M, Dombi G, Köteles I, Fiser B, Kis C, Szabó ZI, Tóth G. Simultaneous determination of enantiomeric purity and organic impurities of dexketoprofen using reversed-phase liquid chromatography-enhancing enantioselectivity through hysteretic behavior and temperature-dependent enantiomer elution order reversal on polysaccharide chiral stationary phases. Int J Mol Sci. 2024;25(5):2697. PubMed, PubMedCentral, CrossRef
  26. Galasso C, Piscitelli C, Brunet C, Sansone C. New in vitro model of oxidative stress: human prostate cells injured with 2,2-diphenyl-1-picrylhydrazyl (DPPH) for the screening of antioxidants. Int J Mol Sci. 2020;21(22):8707. PubMed, PubMedCentral, CrossRef
  27. Lai HY, Wang S, Singh V, Nguyen LTH, Ng KW. Evaluating the antioxidant effects of human hair protein extracts. J Biomater Sci Polym Ed. 2018;29(7-9):1081-1093. PubMed, CrossRef
  28. Djitieu Deutchoua AD, Ngueumaleu Y, Liendji RW, Poungoue Hanga SS, Nguelo BB, Dedzo GK, Ngameni E. Unusual reactivity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) with Fe3+ controlled by competing reactions. RSC Adv. 2024;14(2):1354-1359. PubMed, PubMedCentral, CrossRef
  29. Fatiha M, Abdelkader T. Study of antioxidant activity of pyrimidinium betaines by DPPH radical scavenging method. J Anal Pharm Res. 2019;8(2):33-36. CrossRef
  30. Munteanu IG, Apetrei C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int J Mol Sci. 2021;22(7):3380. PubMed, PubMedCentral, CrossRef
  31. Garcia-Molina P, Garcia-Molina F, Teruel-Puche JA, Rodriguez-Lopez JN, Garcia-Canovas F, Muñoz-Muñoz JL. The relationship between the IC50 values and the apparent inhibition constant in the study of inhibitors of tyrosinase diphenolase activity helps confirm the mechanism of inhibition. Molecules. 2022;27(10):3141. PubMed, PubMedCentral, CrossRef
  32. Le Berre M, Gerlach JQ, Dziembała I, Kilcoyne M. Calculating half maximal inhibitory concentration (IC50) values from glycomics microarray data using graphpad prism. Methods Mol Biol. 2022;2460:89-111. PubMed, CrossRef
  33. Zhao B, Bilen H. Dataset condensation with differentiable siamese augmentation. Proc 38th Int Conf Mach Learn, PMLR. 2021;139:12674-12685.
  34. in WW, Ho KW, Su HH, Fang TF, Tzou SC, Chen IJ, Lu YC, Chang MS, Tsai YC, Liu ES, Su YC, Wang YT, Cheng TL, Huang HK. Fibrinogen-like protein 1 serves as an anti-inflammatory agent for collagen-induced arthritis therapy in mice. Front Immunol. 2021;12:767868. PubMed, PubMedCentral, CrossRef
  35. Sulimai NH, Brown J, Lominadze D. Fibrinogen, fibrinogen-like 1 and fibrinogen-like 2 proteins, and their effects. Biomedicines. 2022;10(7):1712. PubMed, PubMedCentral, CrossRef
  36. Shi AP, Tang XY, Xiong YL, Zheng KF, Liu YJ, Shi XG, Lv Y, Jiang T, Ma N, Zhao JB. Immune checkpoint LAG3 and its ligand FGL1 in cancer. Front Immunol. 2022;12:785091. PubMed, PubMedCentral, CrossRef
  37. Mariuzza RA, Shahid S, Karade SS. The immune checkpoint receptor LAG3: Structure, function, and target for cancer immunotherapy. J Biol Chem. 2024;300(5):107241. PubMed, PubMedCentral, CrossRef
  38. Silberstein JL, Du J, Chan KW, Frank JA, Mathews II, Kim YB, You J, Lu Q, Liu J, Philips EA, Liu P, Rao E, Fernandez D, Rodriguez GE, Kong XP, Wang J, Cochran JR. Structural insights reveal interplay between LAG-3 homodimerization, ligand binding, and function. Proc Natl Acad Sci USA. 2024;121(12):e2310866121. PubMed, PubMedCentral, CrossRef
  39. Huang J, Huang Q, Xue J, Liu H, Guo Y, Chen H, Zhou L. Fibrinogen like protein-1 knockdown suppresses the proliferation and metastasis of TU-686 cells and sensitizes laryngeal cancer to LAG-3 blockade. J Int Med Res. 2022;50(9):3000605221126874. PubMed, PubMedCentral, CrossRef
  40. Deng R, Wu K, Lin J, Wang D, Huang Y, Li Y, Shi Z, Zhang Z, Wang Z, Mao Z, Liao X, Ma H. DeepSub: utilizing deep learning for predicting the number of subunits in homo-oligomeric protein complexes. Int J Mol Sci. 2024;25(9):4803. PubMed, PubMedCentral, CrossRef
  41. Tian T, Xie X, Yi W, Zhou Y, Xu Y, Wang Z, Zhang J, Lin M, Zhang R, Lv Z, Li X, Lv L, Xu Y. FBXO38 mediates FGL1 ubiquitination and degradation to enhance cancer immunity and suppress inflammation. Cell Rep. 2023;42(11):113362. PubMed, CrossRef
  42. Liu XH, Qi LW, Alolga RN, Liu Q. Implication of the hepatokine, fibrinogen-like protein 1 in liver diseases, metabolic disorders and cancer: The need to harness its full potential. Int J Biol Sci. 2022;18(1):292-300. PubMed, PubMedCentral, CrossRef
  43. Wang J, Sanmamed MF, Datar I, Su TT, Ji L, Sun J, Chen L, Chen Y, Zhu G, Yin W, Zheng L, Zhou T, Badri T, Yao S, Zhu S, Boto A, Sznol M, Melero I, Vignali DAA, Schalper K, Chen L. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell. 2019;176(1-2):334-347.e12. PubMed, PubMedCentral, CrossRef
  44. Dilimulati D, Du L, Huang X, Jayachandran M, Cai M, Zhang Y, Zhou D, Zhu J, Su L, Zhang M, Qu S. Serum Fibrinogen-Like Protein 1 Levels in Obese Patients Before and After Laparoscopic Sleeve Gastrectomy: A Six-Month Longitudinal Study. Diabetes Metab Syndr Obes. 2022;15:2511-2520. PubMed, PubMedCentral, CrossRef
  45. Xu W, Liu X, Qu W, Wang X, Su H, Li W, Cheng Y. Exosomes derived from fibrinogen-like protein 1-overexpressing bone marrow-derived mesenchymal stem cells ameliorates rheumatoid arthritis. Bioengineered. 2022;13(6):14545-14561. PubMed, PubMedCentral, CrossRef
  46. Fu L, Liu Z, Liu Y. Fibrinogen-like protein 2 in inflammatory diseases: A future therapeutic target. Int Immunopharmacol. 2023;116:109799. PubMed, CrossRef
  47. Gulcin İ, Alwasel SH. DPPH radical scavenging assay. Processes. 2023;11(8):2248. CrossRef
  48. Eklund PC, Långvik OK, Wärnå JP, Salmi TO, Willför SM, Sjöholm RE. Chemical studies on antioxidant mechanisms and free radical scavenging properties of lignans. Org Biomol Chem. 2005;3(18):3336-3347. PubMed, CrossRef
  49. Villaño D, Fernández-Pachón MS, Troncoso AM, García-Parrilla MC. Comparison of antioxidant activity of wine phenolic compounds and metabolites in vitro. Anal Chimica Acta.2005;538(1-2):391-398. CrossRef
  50. Kumar J, Kumar N, Sati N, Hote PK. Antioxidant properties of ethenyl indole: DPPH assay and TDDFT studies. New J Chem. 2020;44(21):8960-8970. CrossRef
  51. Chen Z, Bertin R, Froldi G. EC50 estimation of antioxidant activity in DPPH· assay using several statistical programs. Food Chem. 2013;138(1):414-420. PubMed, CrossRef
  52. Liu S, Guo Y, Lu L, Lu J, Ke M, Xu T, Lu Y, Chen W, Wang J, Kong D, Shen Q, Zhu Y, Tan W, Ji W, Zhou W. Fibrinogen-like protein 1 is a novel biomarker for predicting disease activity and prognosis of rheumatoid arthritis. Front Immunol. 2020;11:579228. PubMed, PubMedCentral, CrossRef
  53. Planavila A, Redondo-Angulo I, Ribas F, Garrabou G, Casademont J, Giralt M, Villarroya F. Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovasc Res. 2015;106(1):19-31. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.