Ukr.Biochem.J. 2025; Volume 97, Issue 6, Nov-Dec, pp. 65-78

doi: https://doi.org/10.15407/ubj97.06.065

Metabolic effects of broccoli sprouts in mice with cafeteria diet-induced obesity

M. V. Ivanochko, T. R. Dmytriv, I. M. Yatskiv,
M. M. Bayliak, V. I. Lushchak*

Department of Biochemistry and Biotechnology,
Vasyl Stefanyk Carpathian National University, Ivano-Frankivsk, Ukraine;
*e-mail: volodymyr.lushchak@cnu.edu.ua

Received: 05 July 2025; Revised: 29 September 2025;
Accepted: 28 November 2025; Available on-line: 23 December 2025

Broccoli sprouts (BS) are rich in bioactive compounds with reported antioxidant and anti-inflammatory properties. In this study, a cafeteria diet (CD) was used as a model to study diet-induced obesity in animals. The aim of the study was to evaluate the effects of dietary BS supplementation on metabolic parameters in middle-aged male mice subjected to a cafeteria diet (CD) containing such additional components (w/w) as sweet peanuts (28%), milk chocolate (28%) and chocolate cracker (11%). Mice were fed on CD over 20 weeks, after that, blood was collected, mice were sacrificed, liver and adipose tissue were collected and weighed. The levels of glucose, triacylglycerides (TAG), and cholesterol were determined with a diagnostic kit (Reagent, Dnipro, Ukraine), that of IL-1β – by ELISA. Paraoxonase (PON) activity in blood was determined by monitoring p-nitrophenol formation. Mice fed on the CD alone exhibited higher caloric intake without significant body mass gain, but demonstrated elevated liver mass, hyperglycemia, hypertriglyceridemia, and decreased PON activity relative to those fed on the standard diet. Inclusion of BS (2.5, 5 or 10% w/w) in the CD prevented the rise in TAG level and preserved PON activity. However, BS in higher doses (5 and 10%) increased visceral fat accumulation and further elevated blood glucose levels. In contrast, BS supplementation in a standard diet reduced circulating TAG and inflammatory markers without affecting adipose tissue distribution. These findings indicate a dual role of BS in metabolic regulation: while beneficial in reducing oxidative and inflammatory markers, BS may aggravate visceral adiposity and glycemic imbalance in an obesogenic context.

Keywords: , , , , , ,


References:

  1. Bayliak MM, Abrat OB, Storey JM, Storey KB, Lushchak VI. Interplay between diet-induced obesity and oxidative stress: Comparison between Drosophila and mammals. Comp Biochem Physiol A Mol Integr Physiol. 2019;228:18-28. PubMed, CrossRef
  2. Safaei M, Sundararajan EA, Driss M, Boulila W, Shapi’i A. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput Biol Med. 2021;136:104754. PubMed, CrossRef
  3.  Lushchak VI, Covasa M, Abrat OB, Mykytyn TV, Tverdokhlib IZ, Storey KB, Semchyshyn H. Risks of obesity and diabetes development in the population of the Ivano-Frankivsk region in Ukraine. EXCLI J. 2023;22:1047-1054. PubMed, PubMedCentral, CrossRef
  4. Zeeni N, Dagher-Hamalian C, Dimassi H, Faour WH. Cafeteria diet-fed mice is a pertinent model of obesity-induced organ damage: a potential role of inflammation. Inflamm Res. 2015;64(7):501-512. PubMed, CrossRef
  5. Bayliak MM, Abrat OB. Role of Nrf2 in Oxidative and Inflammatory Processes in Obesity and Metabolic Diseases. In: Deng H. (eds) Nrf2 and its Modulation in Inflammation. Progress in Inflammation Research. 2020;85:153-187. CrossRef
  6. Vatashchuk MV, Bayliak MM, Hurza VV, Storey KB, Lushchak VI. Metabolic Syndrome: Lessons from Rodent and Drosophila Models. Biomed Res Int. 2022;2022:5850507. PubMed, PubMedCentral, CrossRef
  7. Demianchuk O, Vatashchuk M, Gospodaryov D, Hurza V, Ivanochko M, Derkachov V, Berezovskyi V, Lushchak O, Storey KB, Bayliak M, Lushchak VI. High-fat high-fructose diet and alpha-ketoglutarate affect mouse behavior that is accompanied by changes in oxidative stress response and energy metabolism in the cerebral cortex. Biochim Biophys Acta Gen Subj. 2024;1868(1):130521. PubMed, CrossRef
  8. Demianchuk O, Bayliak M, Vatashchuk M, Gospodaryov D, Hurza V, Derkachov V, Berezovskyi V, Lushchak VI. Alpha-ketoglutarate promotes anxiety, activates autophagy, and suppresses antioxidant enzymes in the cerebral cortex of female mice on cafeteria diet. Brain Res Bull. 2025;222:111255. PubMed, CrossRef
  9. Villaño D, López-Chillón MT, Zafrilla P, Moreno DA. Bioavailability of broccoli sprouts in different human overweight populations. J Funct Foods. 2019;59:337-44. CrossRef
  10. 10. Ivanochko MV, Bayliak MM, Lushchak VI. Potential of isothiocyanate sulforaphane from broccoli to combat obesity and type 2 diabetes: involvement of NRF2 regulatory pathway. Ukr Biochem J. 2024;96(6):17-28. CrossRef
  11. Syed RU, Moni SS, Break MKB, Khojali WMA, Jafar M, Alshammari MD, Abdelsalam K, Taymour S, Alreshidi KSM, Elhassan Taha MM, Mohan S. Broccoli: A Multi-Faceted Vegetable for Health: An In-Depth Review of Its Nutritional Attributes, Antimicrobial Abilities, and Anti-inflammatory Properties. Antibiotics (Basel). 2023;12(7):1157. PubMed, PubMedCentral, CrossRef
  12. Ivanochko MV, Fediv KV, Shvadchak VV, Bayliak MM, Lushchak VI. Nutritional analysis of aqueous and ethanol broccoli sprout extracts. J Plant Biochem Biotechnol. 2025;34:749-760. CrossRef
  13. Dmytriv TR, Lushchak O, Lushchak VI. Glucoraphanin conversion into sulforaphane and related compounds by gut microbiota. Front Physiol. 2025;16:1497566. PubMed, PubMedCentral, CrossRef
  14. Du K, Fan Y, Li D. Sulforaphane ameliorates lipid profile in rodents: an updated systematic review and meta-analysis. Sci Rep. 2021;11(1):7804. PubMed, PubMedCentral, CrossRef
  15. Barba FJ, Nikmaram N, Roohinejad S, Khelfa A, Zhu Z, Koubaa M. Bioavailability of Glucosinolates and Their Breakdown Products: Impact of Processing. Front Nutr. 2016;3:24. PubMed, PubMedCentral, CrossRef
  16. Tříska J, Balík J, Houška M, Novotná P, Magner M, Vrchotová N, Híc P, Jílek L, Thorová K, Šnurkovič P, Soural I. Factors Influencing Sulforaphane Content in Broccoli Sprouts and Subsequent Sulforaphane Extraction. Foods. 2021;10(8):1927. PubMed, PubMedCentral, CrossRef
  17. López-Chillón MT, Carazo-Díaz C, Prieto-Merino D, Zafrilla P, Moreno DA, Villaño D. Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clin Nutr. 2019;38(2):745-752. PubMed, CrossRef
  18. Men X, Han X, Lee SJ, Oh G, Park KT, Han JK, Choi SI, Lee OH. Anti-Obesogenic Effects of Sulforaphane-Rich Broccoli (Brassica oleracea var. italica) Sprouts and Myrosinase-Rich Mustard (Sinapis alba L.) Seeds In Vitro and In Vivo. Nutrients. 2022;14(18):3814. PubMed, PubMedCentral, CrossRef
  19. Bahadoran Z, Mirmiran P, Hosseinpanah F, Hedayati M, Hosseinpour-Niazi S, Azizi F. Broccoli sprouts reduce oxidative stress in type 2 diabetes: a randomized double-blind clinical trial. Eur J Clin Nutr. 2011;65(8):972-977. PubMed, CrossRef
  20. Sampey BP, Vanhoose AM, Winfield HM, Freemerman AJ, Muehlbauer MJ, Fueger PT, Newgard CB, Makowski L. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity (Silver Spring). 2011;19(6):1109-1117. PubMed, PubMedCentral, CrossRef
  21. Zhang T, Holman J, McKinstry D, Trindade BC, Eaton KA, Mendoza-Castrejon J, Ho S, Wells E, Yuan H, Wen B, Sun D, Chen GY, Li Y. A steamed broccoli sprout diet preparation that reduces colitis via the gut microbiota. J Nutr Biochem. 2023;112:109215. PubMed, CrossRef
  22. Alhajri AS, Saad HH. The Biological, Biochemical, and Immunological Impact of Broccoli and Green Pea Sprouts on Acrylamide Intoxicated Rats. Curr Res Nutr Food Sci. 2023;11(3):1243-1262. CrossRef
  23. Bayliak MM, Sorochynska OM, Kuzniak OV, Drohomyretska IZ, Klonovskyi AY, Hrushchenko AO, Vatashchuk MV, Mosiichuk NM, Storey KB, Garaschuk O, Lushchak VI. High stability of blood parameters during mouse lifespan: sex-specific effects of every-other-day fasting. Biogerontology. 2022;23(5):559-570. PubMed, CrossRef
  24. Bayliak MM, Vatashchuk MV, Gospodaryov DV, Hurza VV, Demianchuk OI, Ivanochko MV, Burdyliuk NI, Storey KB, Lushchak O, Lushchak VI. High fat high fructose diet induces mild oxidative stress and reorganizes intermediary metabolism in male mouse liver: Alpha-ketoglutarate effects. Biochim Biophys Acta Gen Subj. 2022;1866(12):130226. PubMed, CrossRef
  25. Carter S, Miard S, Boivin L, Sallé-Lefort S, Picard F. Loss of Malat1 does not modify age- or diet-induced adipose tissue accretion and insulin resistance in mice. PLoS One. 2018;13(5):e0196603. PubMed, PubMedCentral, CrossRef
  26. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-254. PubMed, CrossRef
  27. Vatashchuk M, Hurza V, Bayliak M.Adapting of spectrophotometric assay of paraoxonase activity with 4-nitrophenylacetate for murine plasma and liver. J Vasyl Stefanyk Precarpathian Nat Univ. 2023;9(4):6-14. CrossRef
  28. Mohanty BR, Sahoo PK, Mahapatra KD, Saha JN. Innate immune responses in families of Indian major carp, Labeo rohita, differing in their resistance to Edwardsiella tarda infection. Curr Sci. 2007;92(9):1270-1274.
  29. Li X, Tian S, Wang Y, Liu J, Wang J, Lu Y. Broccoli microgreens juice reduces body weight by enhancing insulin sensitivity and modulating gut microbiota in high-fat diet-induced C57BL/6J obese mice. Eur J Nutr. 2021;60(7):3829-3839. PubMed, CrossRef
  30. Zandani G, Kaftori-Sandler N, Sela N, Nyska A, Madar Z. Dietary broccoli improves markers associated with glucose and lipid metabolism through modulation of gut microbiota in mice. Nutrition. 2021;90:111240. PubMed, CrossRef
  31. Choi KM, Lee YS, Kim W, Kim SJ, Shin KO, Yu JY, Lee MK, Lee YM, Hong JT, Yun YP, Yoo HS. Sulforaphane attenuates obesity by inhibiting adipogenesis and activating the AMPK pathway in obese mice. J Nutr Biochem. 2014;25(2):201-207. PubMed, CrossRef
  32. Liu Y, Fu X, Chen Z, Luo T, Zhu C, Ji Y, Bian Z. The Protective Effects of Sulforaphane on High-Fat Diet-Induced Obesity in Mice Through Browning of White Fat. Front Pharmacol. 2021;12:665894. PubMed, PubMedCentral, CrossRef
  33. Frith CH, Suber RL, Umholtz R. Hematologic and clinical chemistry findings in control BALB/c and C57BL/6 mice. Lab Anim Sci. 1980;30(5):835-840. PubMed
  34. Winzell MS, Ahrén B. The High-Fat Diet–Fed Mouse: A Model for Studying Mechanisms and Treatment of Impaired Glucose Tolerance and Type 2 Diabetes. Diabetes. 2004;53(suppl_3):S215-S219. CrossRef
  35. Tian S, Li X, Wang Y, Lu Y. The protective effect of sulforaphane on type II diabetes induced by high-fat diet and low-dosage streptozotocin. Food Sci Nutr. 2020;9(2):747-756. PubMed, PubMedCentral, CrossRef
  36. Bowe JE, Franklin ZJ, Hauge-Evans AC, King AJ, Persaud SJ, Jones PM. Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models. J Endocrinol. 2014;222(3):G13-G25. PubMed, CrossRef
  37. Zhang Z, Wang S, Zhou S, Yan X, Wang Y, Chen J, Mellen N, Kong M, Gu J, Tan Y, Zheng Y, Cai L. Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. J Mol Cell Cardiol. 2014;77:42-52. PubMed, CrossRef
  38. Shawky NM, Pichavaram P, Shehatou GS, Suddek GM, Gameil NM, Jun JY, Segar L. Sulforaphane improves dysregulated metabolic profile and inhibits leptin-induced VSMC proliferation: Implications toward suppression of neointima formation after arterial injury in western diet-fed obese mice. J Nutr Biochem. 2016;32:73-84. PubMed, PubMedCentral, CrossRef
  39. Shih DM, Gu L, Hama S, Xia YR, Navab M, Fogelman AM, Lusis AJ. Genetic-dietary regulation of serum paraoxonase expression and its role in atherogenesis in a mouse model. J Clin Invest. 1996;97(7):1630-1639. PubMed, PubMedCentral, CrossRef
  40. Thomàs-Moyà E, Gianotti M, Proenza AM, Lladó I. Paraoxonase 1 response to a high-fat diet: gender differences in the factors involved. Mol Med. 2007;13(3-4):203-239. PubMed, PubMedCentral, CrossRef
  41. Qaddoumi MG, Alanbaei M, Hammad MM, Al Khairi I, Cherian P, Channanath A, Thanaraj TA, Al-Mulla F, Abu-Farha M, Abubaker J. Investigating the Role of Myeloperoxidase and Angiopoietin-like Protein 6 in Obesity and Diabetes. Sci Rep. 2020;10(1):6170. PubMed, PubMedCentral, CrossRef
  42. Ghanbari M, Momen Maragheh S, Aghazadeh A, Mehrjuyan SR, Hussen BM, Abdoli Shadbad M, Dastmalchi N, Safaralizadeh R. Interleukin-1 in obesity-related low-grade inflammation: From molecular mechanisms to therapeutic strategies. Int Immunopharmacol. 2021;96:107765. PubMed, CrossRef
  43. MacQueen HA, Sadler DA, Moore SA, Daya S, Brown JY, Shuker DEG, Seaman M, Wassif WS. Deleterious effects of a cafeteria diet on the livers of nonobese rats. Nutr Res. 2007;27(1):38-47. CrossRef
  44. Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J. 2020;41(1):99-109c. PubMed, PubMedCentral, CrossRef
  45. Watson AD, Berliner JA, Hama SY, La Du BN, Faull KF, Fogelman AM, Navab M. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Invest. 1995;96(6):2882-2891. PubMed, PubMedCentral, CrossRef
  46. Xia Y, Zhai X, Qiu Y, Lu X, Jiao Y. The Nrf2 in Obesity: A Friend or Foe? Antioxidants (Basel). 2022;11(10):2067. PubMed, PubMedCentral, CrossRef
  47. Cui W, Bai Y, Miao X, Luo P, Chen Q, Tan Y, Rane MJ, Miao L, Cai L. Prevention of diabetic nephropathy by sulforaphane: possible role of Nrf2 upregulation and activation. Oxid Med Cell Longev. 2012;2012:821936. PubMed, PubMedCentral, CrossRef
  48. Bahadoran Z, Mirmiran P, Hosseinpanah F, Rajab A, Asghari G, Azizi F. Broccoli sprouts powder could improve serum triglyceride and oxidized LDL/LDL-cholesterol ratio in type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Diabetes Res Clin Pract. 2012;96(3):348-354. PubMed, CrossRef
  49. Bahadoran Z, Mirmiran P, Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord. 2013;12(1):43. PubMed, PubMedCentral, CrossRef
  50. Wang Y, Zhang Z, Sun W, Tan Y, Liu Y, Zheng Y, Liu Q, Cai L, Sun J. Sulforaphane attenuation of type 2 diabetes-induced aortic damage was associated with the upregulation of Nrf2 expression and function. Oxid Med Cell Longev. 2014;2014:123963. PubMed, PubMedCentral, CrossRef
  51. Lastra D, Fernández-Ginés R, Manda G, Cuadrado A. Perspectives on the Clinical Development of NRF2-Targeting Drugs. Handb Exp Pharmacol. 2021;264:93-141. PubMed, CrossRef
  52. Le TN, Chiu CH, Hsieh PC. Bioactive Compounds and Bioactivities of Brassica oleracea L. var. Italica Sprouts and Microgreens: An Updated Overview from a Nutraceutical Perspective. Plants (Basel). 2020;9(8):946. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.