Tag Archives: inflammation

Interaction of 4 allotropic modifications of carbon nanoparticles with living tissues

S. Ya. Paryzhak1, T. I. Dumych1, S. M. Peshkova1,2,
E. E. Bila2, A. D. Lutsyk1, A. Barras3,
R. Boukherroub3, S. Szunerits3, R. O. Bilyy1

1Danylo Halytsky Lviv National Medical University, Ukraine;
2Ivan Franko Lviv National University, Ukraine;
3Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, France;
e-mail: r.bilyy@gmail.com

Received: 19 January 2019; Accepted: 20 March 2019

Environmental pollution and technological progress lead to carbon nanoparticles that pose a serious health risk. They are present in soot, dust, and printing toner and can also be formed during grinding and cutting. Human neutrophils are able to sequester foreign material by formation of neutrophil extracellular traps (NETs), a process that can cause a strong inflammatory response. In the current work we compared proinflammatory properties of different carbon-based nanostructures: nanodiamonds, graphene oxide, fullere­nes C60 and carbon dots. We tested adjuvant properties of carbon nanoparticles in a murine immunization model by investigating humoral (specific IgG and IgM antibodies) and cellular (delayed type hypersensitivity) immune responses. The ability of NETs to sequester nanoparticles was analyzed in a mouse air pouch model and neutrophil activation was verified by in vivo tracking of near-infrared labeled nanodiamonds and ex vivo fluorescent assays using human blood-derived neutrophils. All carbon nanoparticles exhibited proinflammatory adjuvant-like properties by stimulating production of specific IgG but not IgM antibodies (humoral immune response). The adjuvant-like response decreased in this order: from nanodiamonds, graphene oxide, fullerenes C60 to carbon dots. None of the studied carbon nanoparticles triggered a delayed type hypersensitivity reaction (cellular immune response). Nanodiamonds and fullerenes C60 were sequestrated in the body by NETs, as confirmed in the air pouch model and by in vivo fluorescent tracking of near-infrared labeled nanodiamonds.

Blood coagulation and aortic wall integrity in rats with obesity-induced insulin resistance

O. S. Dziuba1, V. O. Chernyshenko1, Ie. A. Hudz1, L. O. Kasatkina1, T. M. Chernyshenko1,
P. P. Klymenko2, H. V. Kosiakova1, T. M. Platonova1, N. M. Hula1, E. V. Lugovskoy1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: oksana.dziuba86@gmail.com;
2State Institute of Gerontology of AMS of Ukraine, Kyiv

Obesity is an important factor in pathogenesis of disorders caused by chronic inflammation. Diet-induced obesity leads to dyslipidemia and insulin resistance (IR) that in turn provoke the development of type 2 diabetes and cardiovascular diseases. Thus, the aim of this work was to investigate the possible pro-atherogenic effects in the blood coagulation system and aortic wall of rats with obesity-induced IR. The experimental model was induced by a 6-month high-fat diet (HFD) in white rats. Blood samples were collected from 7 control and 14 obese IR rats. Prothrombin time (PT) and partial activated thromboplastin time (APTT) were performed by standard methods using Coagulometer Solar СТ 2410. Fibrinogen concentration in the blood plasma was determined by the modified spectrophotometric method. Levels of protein C (PC), prothrombin and factor X were measured using specific chromogenic substrates and activa­ting enzymes from snake venoms. Platelet aggregation was measured and their count determined using Aggregometer Solar AP2110. The aorta samples were stained by hematoxylin and eosin according to Ehrlich. Aortic wall thickness was measured using morphometric program Image J. Statistical analysis was performed using Mann-Whitney U Test. The haemostasis system was characterized by estimation of the levels of individual coagulation factors, anticoagulant system involvement and platelet reactivity. PT and APTT demonstrated that blood coagulation time strongly tended to decrease in obese IR rats in comparison to the control group. It was also detec­ted that 30% of studied obese IR rats had decreased factor X level, 40% had decreased level of prothrombin whereas fibrinogen concentration was slightly increased up to 3 mg/ml in 37% of obese IR rats. A prominent decrease of anticoagulant PC in blood plasma of obese rats was detected. Obese IR rats also had increased platelet count and higher rate of platelet aggregation in comparison to control animals. Histological analysis identified the disruption of aorta endothelium and tendency for the thickening of the aorta wall in the group with obesity-induced IR compared to the group of control rats. Changes of individual coagulation factors were assumed as the evidence of imbalance in the blood coagulation system. Increase of fibrinogen level, drop in PC concentration and pathological platelet reactivity were taken to corroborate the development of low-grade inflammation in obese IR rats. Instant generation of small amounts of thrombin in their blood plasma is expected. Since the aorta morphology assay detected the trend of its wall to thicken and the emergence of disruptions, we assumed there were initial stages of atherosclerosis and the danger of developing atherothrombosis. We detected an increase of blood coagulability and changes in aorta morphology in rats with obesity-induced IR which we assume indicate early development of atherosclerosis.

4-Thiazolidinone-based derivatives rescue TNAα-inhibited osteoblast differentiation in mouse mesenchymal precursor cells

Kh. V. Malysheva1,2,3, N. S. Finiuk1, O. K. Pavlenko4, D. Ya. Havrylyuk5,
R. B. Lesyk5, R. S. Stoika1, O. G. Korchynskyi1,3

1Institute of Cell Biology, NAS of Ukraine, Lviv;
2Insitute of Animal Biology, NAAS of Ukraine, Lviv;
3Centre for Innovative Research in Medical and Natural Sciences,
Rzeszow University and Medical Faculty, Poland;
4Ivan Franko National University of Lviv, Ukraine;
5Danylo Halytsky Lviv National Medical University, Ukraine;
e-mail: olexkor@hotmail.com

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease of yet unknown etiology. Tumor necrosis factor α (TNFα) is recognized as a regulatory substance that plays a central role in RA development and progression. On the other side, the bone morphogenetic protein (BMP) and Wnt signaling pathways are key mechanisms that induce and support cartilage and bone formation and maintenance. Previous studies showed that the pro-inflammatory cytokines TNFα and interleukin 1β (IL-1β) are central players in the inhibition of activity of skeletogenesis. The aim of this study was to evaluate the anti-inflammatory activity of novel 4-thiazolidinone-based derivatives towards TNFα–induced pro-inflammatory effects during bone formation. We performed in vitro evaluation of functional effects of 4-thiazolidinones denoted as Les-4368, Les-4370, Les-3882 and Les-3288 that were used in different doses (0.02, 0.1, 0.3 and 1.0 μM) on the TNFα-mediated inhibition of the BMP-induced osteoblast differentiation in mouse mesenchymal precursor (stem) cells of C2C12 line. Treatment of these cells with TNFα completely inhibited their myogenic differentiation, as well as strongly inhibited the BMP-induced osteogenesis. Strikingly, the treatment of C2C12 cells with Les-4368 and Les-3882 rescued the osteoblast differentiation from negative control of TNFα, and, moreover, converted this cytokine from the inhibitor of osteogenesis into its stimulator. Western-blot analysis of Inhibitory κBα (I-κBα) degradation was used to elucidate a mechanism of the anti-inflammatory effects. Les-3882 was more active, and it stimulated osteoblast differentiation at low dose (0.1 μM), presumably, via modulation of the NF-κB signaling pathway.

Effect of hydrogen sulfide-releasing aspirin on esophageal and gastric mucosa compromised by stress injury

O. S. Zayachkivska1, N. S. Bula1, Ya. I. Pavlovskiy1, I. O. Pshyk-Titko1,
E. M. Gavriluk1, O. I. Grushka1, J. L. Wallace2,3

1Danylo Halytsky Lviv National Medical University, Ukraine;
2University of Calgary, Canada;
3University of Toronto, Canada;
e-mail: ozayachkivska@gmail.com

Recent data of study H2S in gastrointestinal tract has proven its potent cytoprotection on mucosal defense among acid-related diseases in the gut. The aim was to evaluate the effects of H2S-releasing aspirin derivative (ATB-340) on esophageal and gastric mucosa compromised by stress injury. Rats were treated with vehicle (control), aspirin (10 mg/kg), ATB-340 (17.5 mg/kg) single or 9 days duration, with or without induction of stress injury. Esophageal mucosa, gastric mucosa were estimated by histopathological damage scoring. Serological levels of VCAM-1, IL-6 by ELISA. ATB-340 treatment resulted in protective effect and lower grade of damage score in esophageal mucosa and gastric mucosa lesions vs effect of aspirin in single or 9 days applications. The serum levels of VCAM, IL-6 in rats who were aspirin-treated and subjected to stress-injury were higher than those in control animals. Treatment with ATB-340 produced an anti-inflammatory effect by decreasing VCAM and IL-6 vs aspirin. Cytoprotective effect of ATB-340 on esophageal mucosa and gastric mucosa was modulated by inhibi­ting inflammation and improving endothelial functions.

Role of plasminogen/plasmin in functional activity of blood cells

D. D. Zhernossekov, E. I. Yusova, T. V. Grinenko

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;

The article deals with the data concerning structural peculiarities of plasminogen/plasmin molecule, which define the specificity of intermolecular interactions and provide the variety of its biological functions. The main principles of the modern classification of plasminogen receptors and factors, which modulate their expression, have been presented. We have considered the mechanisms regulating both plasmin formation and activity on the surface of cells, fibrin and proteins of extracellular matrix. The data of previous investigators and our own results, concerning the influence of plasminogen/plasmin on platelet aggregation induced by different agonists, have been summarized. The participation of plasminogen/plasmin in atherogenesis and angiogenesis mediated­ by endotheliocyte receptors has been discussed. Special attention was given to plasminogen/plasmin pro-inflammatory function, which is realized by regulatory processes of activation, secretion, migration and apoptosis of monocytes and macrophages.

Use of vitamins for correction of the functional state of cytochrome P450 systems at experimental allergic encephalomyelitis

E. P. Pasichna1, G. V. Donchenko1, A. P. Burlaka2, V. S. Nedzvetskiy3,
E. P. Sidorik2, I. I.Ganusevich2, N. V. Delemenchuk1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
2Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv;
3Honchar National University, Dnipropetrovsk, Ukraine;
e-mail: ellapasich@gmail.com

It is known that inflammatory cytokines, which level is significantly increased in the pathogenesis of multiple sclerosis (MS), as well as interferon-β, which is used to treat autoimmune diseases, can inhibit cytochrome P450-dependent processes of detoxification and biotransformation. The uncontrolled decrease of the activity of these processes may have a negative affect on the state of patients, so it is urgent to study the functional state of the cytochrome P450 system and to develop effective means for its regulation in these conditions. The effect of vitamin D3 and efficiency of its composition with vitamins B1, B2, B6, PP, E, α-lipoic, α-linolenoic acid and mineral substances (Mg, Zn, Se) in prevention of a functional state changes of cytochrome P450- and b5-dependent systems of the rat brain and liver endoplasmic reticulum at EAE are investigated. It has been shown that the essential decrease of the level of these cytochromes is observed both in the brain and liver. In addition the level of activity of NADH-and NADPH-oxidoreductases, which are part of microsomal electron transport chain components and coupled with monooxigenases, was reduced. These changes confirm the disturbances of a redox state and functional activity of detoxication and biotransformation systems in the studied animal tissues. Supplement of vitamin D3 as well as the composition of biologically active substances, which we developed earlier, effectively eliminated the decrease of the level of cytochromes and activities of NADH-oxidoreductase in immunised rat tissues. Normalization of these disturbances can be explained by antioxidant and membrane-stabilizing properties of applied substances, and also by the ability to reduce the activity of inflammatory reactions by regulation of the level of inflammatory cytokines in rat organism at EAE. Thus the studied vitamin-mineral composition appeared to be more effective to normalize the found disturbances and it can be useful for prevention of exacerbations and for improvement of a status of patients with multiple sclerosis and other diseases, which are accompanied with hyperactivation of immune system.