Ukr.Biochem.J. 2019; Volume 91, Issue 2, Mar-Apr, pp. 41-50


Interaction of 4 allotropic modifications of carbon nanoparticles with living tissues

S. Ya. Paryzhak1, T. I. Dumych1, S. M. Peshkova1,2,
E. E. Bila2, A. D. Lutsyk1, A. Barras3,
R. Boukherroub3, S. Szunerits3, R. O. Bilyy1

1Danylo Halytsky Lviv National Medical University, Ukraine;
2Ivan Franko Lviv National University, Ukraine;
3Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, France;

Received: 19 January 2019; Accepted: 20 March 2019

Environmental pollution and technological progress lead to carbon nanoparticles that pose a serious health risk. They are present in soot, dust, and printing toner and can also be formed during grinding and cutting. Human neutrophils are able to sequester foreign material by formation of neutrophil extracellular traps (NETs), a process that can cause a strong inflammatory response. In the current work we compared proinflammatory properties of different carbon-based nanostructures: nanodiamonds, graphene oxide, fullere­nes C60 and carbon dots. We tested adjuvant properties of carbon nanoparticles in a murine immunization model by investigating humoral (specific IgG and IgM antibodies) and cellular (delayed type hypersensitivity) immune responses. The ability of NETs to sequester nanoparticles was analyzed in a mouse air pouch model and neutrophil activation was verified by in vivo tracking of near-infrared labeled nanodiamonds and ex vivo fluorescent assays using human blood-derived neutrophils. All carbon nanoparticles exhibited proinflammatory adjuvant-like properties by stimulating production of specific IgG but not IgM antibodies (humoral immune response). The adjuvant-like response decreased in this order: from nanodiamonds, graphene oxide, fullerenes C60 to carbon dots. None of the studied carbon nanoparticles triggered a delayed type hypersensitivity reaction (cellular immune response). Nanodiamonds and fullerenes C60 were sequestrated in the body by NETs, as confirmed in the air pouch model and by in vivo fluorescent tracking of near-infrared labeled nanodiamonds.

Keywords: , , ,


  1. Pieterse E, Jeremic I, Czegley C, Weidner D, Biermann MH, Veissi S, Maueröder C, Schauer C, Bilyy R, Dumych T, Hoffmann M, Munoz LE, Bengtsson AA, Schett G, van der Vlag J, Herrmann M. Blood-borne phagocytes internalize urate microaggregates and prevent intravascular NETosis by urate crystals. Sci Rep. 2016 Dec 5;6(1):38229.   PubMed, PubMedCentral, CrossRef
  2. Mulay SR, Desai J, Kumar SV, Eberhard JN, Thomasova D, Romoli S1, Grigorescu M1, Kulkarni OP, Popper B, Vielhauer V, Zuchtriegel G, Reichel C, Bräsen JH, Romagnani P, Bilyy R, Munoz LE, Herrmann M, Liapis H, Krautwald S, Linkermann A, Anders HJ. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat Commun. 2016 Jan 28;7:10274. PubMed, PubMedCentral, CrossRef
  3. Schauer C, Janko C, Munoz LE, Zhao Y, Kienhöfer D, Frey B, Lell M, Manger B, Rech J, Naschberger E, Holmdahl R, Krenn V, Harrer T, Jeremic I, Bilyy R, Schett G, Hoffmann M, Herrmann M. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014 May;20(5):511-7. PubMedCrossRef
  4. Muñoz LE, Bilyy R, Biermann MH, Kienhöfer D, Maueröder C, Hahn J, Brauner JM, Weidner D, Chen J, Scharin-Mehlmann M, Janko C, Friedrich RP, Mielenz D, Dumych T, Lootsik MD, Schauer C, Schett G, Hoffmann M, Zhao Y, Herrmann M. Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation. Proc Natl Acad Sci USA. 2016 Oct 4;113(40):E5856-E5865. PubMed, PubMedCentral, CrossRef
  5. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004 Mar 5;303(5663):1532-5. PubMed, CrossRef
  6. Kirchner T, Möller S, Klinger M, Solbach W, Laskay T, Behnen M. The impact of various reactive oxygen species on the formation of neutrophil extracellular traps. Mediators Inflamm. 2012;2012:849136. PubMed, PubMedCentral, CrossRef
  7. Bilyy R, Fedorov V, Vovk V, Leppkes M, Dumych T, Chopyak V, Schett G, Herrmann M. Neutrophil Extracellular Traps Form a Barrier between Necrotic and Viable Areas in Acute Abdominal Inflammation. Front Immunol. 2016 Oct 10;7:424. PubMed, PubMedCentral, CrossRef
  8. Podolska MJ, Mahajan A, Knopf J, Hahn J, Boeltz S, Munoz L, Bilyy R, Herrmann M. Autoimmune, rheumatic, chronic inflammatory diseases: Neutrophil extracellular traps on parade. Autoimmunity. 2018 Sep;51(6):281-287.  PubMed, CrossRef
  9. Sin YM, Sedgwick AD, Chea EP, Willoughby DA. Mast cells in newly formed lining tissue during acute inflammation: a six day air pouch model in the mouse. Ann Rheum Dis. 1986 Oct;45(10):873-7. PubMed, PubMedCentral, CrossRef
  10. Chorna I, Bilyy R, Datsyuk L, Stoika R. Comparative study of human breast carcinoma MCF-7 cells differing in their resistance to doxorubicin: effect of ionizing radiation on apoptosis and TGF-beta production. Exp Oncol. 2004 Jun;26(2):111-7. PubMed
  11. Ngan J, Kind LS. Suppressor T cells for IgE and IgG in Peyer’s patches of mice made tolerant by the oral administration of ovalbumin. J Immunol. 1978 Mar;120(3):861-5. PubMed
  12. O’Hagan DT, Jeffery H, Davis SS. Long-term antibody responses in mice following subcutaneous immunization with ovalbumin entrapped in biodegradable microparticles. Vaccine. 1993;11(9):965-9. PubMed, CrossRef
  13. Mota I, Wong D. Homologous and heterologous passive cutaneous anaphylactic activity of mouse antisera during the course of immunization. Life Sci. 1969 Aug 15;8(16):813-20.  PubMed, CrossRef
  14. Allen IC. Delayed-type hypersensitivity models in mice. Methods Mol Biol. 2013;1031:101-7.  PubMed, CrossRef
  15. Bilyy R, Paryzhak S, Turcheniuk K, Dumych T, Barras A, Boukherroub R, et al. Aluminum oxide nanowires as safe and effective adjuvants for next-generation vaccines. Mater Today. 2019; 22:58-66. CrossRef
  16. Stephen J, Scales HE, Benson RA, Erben D, Garside P, Brewer JM. Neutrophil swarming and extracellular trap formation play a significant role in Alum adjuvant activity. NPJ Vaccines. 2017 Jan 23;2(1):1.  PubMed, PubMedCentral, CrossRef
  17. Biermann MH, Podolska MJ, Knopf J, Reinwald C, Weidner D, Maueröder C, Hahn J, Kienhöfer D, Barras A, Boukherroub R, Szunerits S, Bilyy R, Hoffmann M, Zhao Y, Schett G, Herrmann M, Munoz LE. Oxidative Burst-Dependent NETosis Is Implicated in the Resolution of Necrosis-Associated Sterile Inflammation. Front Immunol. 2016 Dec 1;7:557. PubMed, PubMedCentral, CrossRef
  18. Bianco A. Graphene: safe or toxic? The two faces of the medal. Angew Chem Int Ed Engl. 2013 May 3;52(19):4986-97.  PubMed, CrossRef
  19. Li C, Ye R, Bouckaert J, Zurutuza A, Drider D, Dumych T, Paryzhak S, Vovk V, Bilyy RO, Melinte S, Li M, Boukherroub R, Szunerits S. Flexible Nanoholey Patches for Antibiotic-Free Treatments of Skin Infections. ACS Appl Mater Interfaces. 2017 Oct 25;9(42):36665-36674. PubMed, CrossRef
  20. Prylutska S, Bilyy R, Schkandina T, Bychko A, Cherepanov V, Andreichenko K, Stoika R, Rybalchenko V, Prylutskyy Y, Scharff P, Ritter U. Effect of iron-doped multi-walled carbon nanotubes on lipid model and cellular plasma membranes. Mater Sci Eng C Mater Biol Appl. 2012 Aug 1;32(6):1486-9. PubMed, CrossRef
  21. Lategan K, Fowler J, Bayati M, Fidalgo de Cortalezzi M, Pool E. The Effects of Carbon Dots on Immune System Biomarkers, Using the Murine Macrophage Cell Line RAW 264.7 and Human Whole Blood Cell Cultures. Nanomaterials (Basel). 2018 May 31;8(6). pii: E388. PubMed, PubMedCentral,CrossRef
  22. Chen BX, Wilson SR, Das M, Coughlin DJ, Erlanger BF. Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc Natl Acad Sci USA. 1998 Sep 1;95(18):10809-13. PubMed, PubMedCentral, CrossRef
  23. Andreev SM, Babakhin AA, Petrukhina AO, Romanova VS, Parnes ZN, Petrov RV. Immunogenic and allergenic properties of fulleren conjugates with aminoacids and proteins. Dokl Biochem. 2000 Jan-Feb;370(1-6):4-7. PubMed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.