Tag Archives: anticancer activity

New dinuclear cyanido complexes with amine alcohol ligand: synthesis, characterization and biotechnological application potential

N. Korkmaz1*, Ş. A. Korkmaz2, Y. Ceylan3,
R. İmamoğlu3, A. S. Bülbül4, A. Karadağ5

1Department of Basic Sciences and Health, Hemp Institute, Yozgat Bozok University, Yozgat, Turkey;
2Department of Chemistry and Chemical Processing Technologies, Tunceli Vocational School, Munzur University, Tunceli, Turkey;
3Faculty of Science, Department of Molecular Biology and Genetics, Bartın University, Bartın, Turkey;
4Department of Biology, Faculty of Science and Arts, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey;
5Department of Chemistry, Faculty of Arts and Sciences, Yozgat Bozok University, Yozgat, Turkey;
*e-mail: nesrinokumus@gmail.com

Received: 14 September 2021; Accepted: 21 January 2022

In this study, the cyanido complexes given by the formula [Ni(Abut)Ni(CN)4]·8H2O (C1), [Cu(Abut)2Ni(CN)4]·7H2O (C2), [Zn(Abut)Ni(CN)4]·8H2O (C3) and [Cd(Abut)Ni(CN)4]·7H2O (C4) were obtained by microwave synthesis method. The powder forms of the complexes were characterized by elemental, FT-IR spectroscopy, and thermal analysis. And also antibacterial, antibiofilm and anticancer activities were investigated. The splitting stretching bands of cyanido groups in the FT-IR spectra of C1-C4 indicated the assets of terminal and end cyanido groups. The antibacterial activities of C1-C4 were tested with nine Gram negative and six Gram positive bacteria. The most efficient antibacterial activity of complexes was observed at 1000 µg/ml-1 concentration. Anticancer activity was tested using HeLa cell line and MTT test. The studied cyanide complexes have been shown to decrease the viability of HeLa cells with IC50 values 14.86, 6.5, 7.2 and 19.2 µg/ml for C1, C2, C3 and C4 complex, respectively.

Selected 5-amino-1-aryl-1H-1,2,3-triazole scaffolds as promising antiproliferative agents

N. Pokhodylo1*, O. Shyyka1, N. Finiuk2, R. Stoika2

1Ivan Franko National University of Lviv, Ukraine;
2Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv;
*e-mail: pokhodylo@gmail.com; stoika@cellbiol.lviv.ua

Received: 09 January 2020; Accepted: 25 June 2020

Development of a new effective drugs with low side effects and definite chemical characteristics needs indentification of bioactive scaffolds for further structural optimization. New synthesized derivatives of 4-hetaryl-5-amino-1-aryl-1H-1,2,3-triazoles and 3H-[1,2,3]triazolo[4,5-b]pyridines were tested for anticancer activity using 60 human tumor cell lines within 9 cancer types. The selective influence of (5-amino-1H-1,2,3-triazol-4-yl)quinazolin-4(3H)-ones: 2-(5-amino-1-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)quinazolin-4(3H)-one and 2-(5-amino-1-phenyl-1H-1,2,3-triazol-4-yl)-6-bromoquinazolin-4(3H)-one on ovarian cancer OVCAR-4 cells with growth percentage (GP) = -4.08 and 6.63%, respectively, was found. The derivative  5,7-diamino-3-(3-(trifluoromethyl)phenyl)-3H-[1,2,3]triazolo[4,5-b]pyridine-6-carbonitrile possessed high activity towards lung cancer EKVX cells (GP = 29.14%). The compounds were shown to be less toxic than doxorubicin towards non-tumor human embryonic kidney cells of HEK293 line. Thus, the results of our study confirm the anticancer potential of compounds based on 5-amino-1-aryl-1H-1,2,3-triazoles scaffolds and their fused polycyclic derivatives.

Cytotoxic action of maleimide derivative 1-(4-Cl-benzyl)-3-chloro-4-(CF(3)-phenylamino)-1H-pyrrole-2,5-dione toward mammalian tumor cells and its capability to interact with DNA

N. S. Finiuk1,2, I. I. Ivasechko1, O. Yu. Klyuchivska1,
H. M. Kuznietsova3, V. K. Rybalchenko3, R. S. Stoika1,2,3*

1Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv;
2Ivan Franko National University of Lviv, Ukraine;
3Taras Shevchenko National University of Kyiv, Ukraine;
*e-mail: stoika@cellbiol.lviv.ua

Received: 21 November 2019; Accepted: 15 May 2020

Development of chemical compounds capable to supress tumor progression is a perspective strategy of cancer treatment. Heterocyclic compounds possess a broad spectrum of biological activities, including anticancer one. According to the previous results of in silico modeling maleimide derivative 1-(4-Cl-benzil)-3-Cl-4-(CF3-phenylamino)-1Н-pyrrole-2,5-dione (MI-1) has a potential effect as an inhibitor of tyrosine protein kinases. The present study was aimed at in vitro evaluation of MI-1 cytotoxic effects toward tumor cells of various lines. The viability of tumor cells after  incubation with MI-1 was measured by means of 3,4,5-dymetyltiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT) test. The MI-1 compound was shown to be toxic for a majority of studied tumor cell lines with IC50 value ranging from 0.8 to 62.2 μg/ml depending on the tissue origin of cells. The most prominent effect of MI-1 towards human cervix carcinoma (KB3-1 and KBC-1) cells with six times higher toxicity towards the multidrug resistant sub-line KBC-1 cells comparing with the action of Doxorubicin was demonstrated.  MI-1 inhibited the viability of human pancreatic, hepatocarcinoma, and colon carcinoma cells only in high doses, while human and rat glioblastoma cells were not sensitive to MI-1. Thus, the MI-1 anticancer activity dropped in the following rank of tumor cells: cervix > breast > pancreatic carcinoma > liver carcinoma > colon carcinoma > glioblastoma. Experiments on replacement of methyl green dye from DNA-methyl green complex showed that MI-1 intercalated into DNA molecule structure. The increase of the amount of the additional band of super-spiral DNA in the presence of MI-1 was revealed by means of DNA retardation at electrophoresis in the agarose gel and this effect was more pronounced than the effect of doxorubicin. The data presented indicate a new DNA-targeting mechanism of maleimide derivative 1-(4-Cl-benzil)-3-Cl-4-(CF3-phenylamino)-1Н-pyrrole-2,5-dione anticancer action.

Synthesis and anti-leukemic activity of pyrrolidinedione-thiazolidinone hybrids

A. Kryshchyshyn1*, D. Kaminskyy1, O. Roman1, R. Kralovics2, O. Karpenko3, R. Lesyk1

1Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Ukraine;
2Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria;
3Enamine Ltd., Kyiv, Ukraine;
*e-mail: kryshchyshyn.a@gmail.com

Received: 22 December 2019; Accepted: 27 March 2020

A series of novel 2-(5-ylidene-4-oxo-2-thioxo-thiazolidin-3-yl)-succinimides and 5-ylidene-3-(1-arylpyrrolidine-2,5-dione)-thiazolidine-2,4-diones were synthesized. An efficient simple protocol for rhodanine-pyrrolidinedione hybrids synthesis which allows avoiding the step of anhydride formation was proposed. Following the previous data on antileukemic properties of related thiazolidinone derivatives, the activity of 19 target compounds was investigated towards four leukemia cell lines: Dami, HL-60, Jurkat, and K562. Among the tested compounds, 3-[5-(4-chloro-benzylidene)-4-oxo-2-thioxo-thiazolidin-3-yl]-1-phenyl-pyrrolidine-2,5-dione (Compound 1) possessed good and selective antiproliferative action against Dami and HL-60 cell lines and satisfactory toxicity level (acute toxicity evaluated in vivo in mice).