Ukr.Biochem.J. 2020; Volume 92, Issue 2, Mar-Apr, pp. 108-119

doi: https://doi.org/10.15407/ubj92.02.108

Synthesis and anti-leukemic activity of pyrrolidinedione-thiazolidinone hybrids

A. Kryshchyshyn1*, D. Kaminskyy1, O. Roman1, R. Kralovics2, O. Karpenko3, R. Lesyk1

1Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Ukraine;
2Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria;
3Enamine Ltd., Kyiv, Ukraine;
*e-mail: kryshchyshyn.a@gmail.com

Received: 22 December 2019; Accepted: 27 March 2020

A series of novel 2-(5-ylidene-4-oxo-2-thioxo-thiazolidin-3-yl)-succinimides and 5-ylidene-3-(1-arylpyrrolidine-2,5-dione)-thiazolidine-2,4-diones were synthesized. An efficient simple protocol for rhodanine-pyrrolidinedione hybrids synthesis which allows avoiding the step of anhydride formation was proposed. Following the previous data on antileukemic properties of related thiazolidinone derivatives, the activity of 19 target compounds was investigated towards four leukemia cell lines: Dami, HL-60, Jurkat, and K562. Among the tested compounds, 3-[5-(4-chloro-benzylidene)-4-oxo-2-thioxo-thiazolidin-3-yl]-1-phenyl-pyrrolidine-2,5-dione (Compound 1) possessed good and selective antiproliferative action against Dami and HL-60 cell lines and satisfactory toxicity level (acute toxicity evaluated in vivo in mice).

Keywords: , , ,


References:

  1. Kaminskyy D, Zimenkovsky B, Lesyk R. Synthesis and in vitro anticancer activity of 2,4-azolidinedione-acetic acids derivatives. Eur J Med Chem. 2009; 44(9): 3627-3636. PubMed, CrossRef
  2. Senkiv J, Finiuk N, Kaminskyy D, Havrylyuk D, Wojtyra M, Kril I, Gzella A, Stoika R, Lesyk R. 5-Ene-4-thiazolidinones induce apoptosis in mammalian leukemia cells. Eur J Med Chem. 2016; 117: 33-46. PubMed, CrossRef
  3. Kaminskyy D, den Hartog GJM, Wojtyra M, Lelyukh M, Gzella A, Bast A, Lesyk R. Antifibrotic and anticancer action of 5-ene amino/iminothiazolidinones. Eur J Med Chem. 2016; 112: 180-195. PubMed, CrossRef
  4. Kaminskyy D, Kryshchyshyn A, Lesyk R. 5-Ene-4-thiazolidinones – an efficient tool in medicinal chemistry. Eur J Med Chem. 2017; 140: 542-594.  PubMed, PubMedCentral, CrossRef
  5. Kaminskyy D, Kryshchyshyn A, Lesyk R. Recent developments with rhodanine as a scaffold for drug discovery. Expert Opin Drug Discov. 2017; 12(12): 1233-1252. PubMed, CrossRef
  6. Kaminskyy DV, Lesyk RB. Structure-anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives. Biopolym Cell. 2010; 26(2): 136-145.  CrossRef
  7. Kaminskyy DV, Roman OM, Atamanyuk DV, Lesyk RB. 5-Ylidene-2-thioxo-4-thiazolidinone-3-succinic acids and their derivatives: synthesis, anticancer activity, QSAR-analysis. J Org Pharm Chem. 2006; 4(1(13)): 41-48. (In Ukrainian).
  8. Zheng CJ, Song MX Sun L, Wu Y, Hong L, Piao HR. Synthesis and biological evaluation of 5-aryloxypyrazole derivatives bearing a rhodanine-3-aromatic acid as potential antimicrobial agents. Bioorg Med Chem Lett. 2012; 22(23): 7024-7028. PubMed, CrossRef
  9. Liu JC, Zheng CJ, Wang MX, Li YR, Ma LX, Hou S, Piao HR. Synthesis and evaluation of the antimicrobial activities of 3-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)-2-thioxothiazolidin-4-one derivatives. Eur J Med Chem. 2014; 74: 405-410. PubMed, CrossRef
  10. Jin X, Zheng CJ, Song MX, Wu Y, Sun LP, Li YJ, Yu LJ, Piao HR. Synthesis and antimicrobial evaluation of L-phenylalanine-derived C5-substituted rhodanine and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone. Eur J Med Chem. 2012; 56: 203-209.  PubMed, CrossRef
  11. Liu XF, Zheng CJ, Sun L, Liu XK, Piao HR. Synthesis of new chalcone derivatives bearing 2,4-thiazolidinedione and benzoic acid moieties as potential anti-bacterial agents. Eur J Med Chem. 2011; 46(8): 3469-3473. PubMed, CrossRef
  12. Tomašić T, Kovač A, Simčič M, Blanot D, Grdadolnik SG, Gobec S, Kikelj D, Mašič LP. Novel 2-thioxothiazolidin-4-one inhibitors of bacterial MurD ligase targeting D-Glu- and diphosphate-binding sites. Eur J Med Chem. 2011; 46(9): 3964-3975.  PubMed, CrossRef
  13. Orchard MG, Neuss JC, Galley CMS, Carr A, Porter DW, Smith P, Scopes DIC, Haydon D, Vousden K, Stubberfield CR, Young K, Page M. Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl Transferase 1 (PMT1). Bioorg Med Chem Lett. 2004; 14(15): 3975-3978. PubMed, CrossRef
  14. Pudhom K, Kasai K, Terauchi H, Inoue H, Kaiser M, Brun R, Ihara M, Takasu K. Synthesis of three classes of rhodacyanine dyes and evaluation of their in vitro and in vivo antimalarial activity. Bioorg Med Chem. 2006; 14(24): 8550-8563. PubMed, CrossRef
  15. Smith TK, Young BL, Denton H, Hughes DL, Wagner GK. First small molecular inhibitors of T. brucei dolicholphosphate mannose synthase (DPMS), a validated drug target in African sleeping sickness. Bioorg Med Chem Lett. 2009; 19(6): 1749-1752. PubMed, PubMedCentral, CrossRef
  16. Choi J, Ko Y, Lee HS, Park YS, Yang Y, Yoon S. Identification of (b-carboxyethyl)-rhodanine derivatives exhibiting peroxisome proliferator-activated receptor γ activity. Eur J Med Chem. 2010; 45(1): 193-202. PubMed, CrossRef
  17. Maccari R, Paoli P, Ottanà R, Jacomelli M, Ciurleo R, Manao G, Steindl T, Langer T, Vigorita MG, Camici G. 5-Arylidene-2,4-thiazolidinediones as inhibitors of protein tyrosine phosphatases. Bioorg Med Chem. 2007; 15(15): 5137-5149.  PubMed, CrossRef
  18. Kaminskyy D, Bednarczyk-Cwynar B, Vasylenko O, Kazakova O, Zimenkovsky B, Zaprutko L, Lesyk R. Synthesis of new potential anticancer agents based on 4-thiazolidinone and oleanane scaffolds. Med Chem Res. 2012; 21(11): 3568-3580. CrossRef
  19. Suresh N, Nagesh HN, Sekhar KVG, Kumar A, Shirazi AN, Parang K. Synthesis of novel ciprofloxacin analogues and evaluation of their anti-proliferative effect on human cancer cell lines. Bioorg Med Chem Lett. 2013; 23(23): 6292-6295.  PubMed, CrossRef
  20. Sun CL, Christensen JG, McMahon G. Chapter 1. In: Li R, Stafford JA, eds. Kinase Inhibitor Drugs. Hoboken, New Jersey.: John Wiley Sons, Inc, 2009. CrossRef
  21. Szychowski KA, Leja ML, Kaminskyy DV, Binduga UE, Pinyazhko OR, Lesyk RB, Gmiński J. Study of novel anticancer 4-thiazolidinone derivatives. Chem Biol Interact. 2017; 262: 46-56. PubMed, CrossRef
  22. Salamone S, Colin C, Grillier-Vuissoz I, Kuntz S, Mazerbourg S, Flament S, Martin H, Richert L, Chapleur Y, Boisbrun M. Synthesis of new troglitazone derivatives: anti-proliferative activity in breast cancer cell lines and preliminary toxicological study. Eur J Med Chem. 2012; 51: 206-215. PubMed, CrossRef
  23. Jain VS, Vora DK, Ramaa CS. Thiazolidine-2,4-diones: progress towards multifarious applications. Bioorg Med Chem. 2013; 21(7): 1599-1620. PubMed, CrossRef
  24. Szychowski KA, Leja ML, Kaminskyy DV, Kryshchyshyn AP, Binduga UE, Pinyazhko OR, Lesyk RB, Tobiasz J, Gmiński J. Anticancer properties of 4-thiazolidinone derivatives depend on peroxisome proliferator-activated receptor gamma (PPARγ). Eur J Med Chem. 2017; 141: 162-168.  PubMed, CrossRef
  25. Chandrappa S, Kavitha CV, Shahabuddin MS, Vinaya K, Kumar CSA, Ranganatha SR, Raghavan SC, Rangappa KS. Synthesis of 2-(5-((5-(4-chlorophenyl)furan-2-yl)methylene)-4-oxo-2-thioxo-thiazolidin-3-yl)acetic acid derivatives and evaluation of their cytotoxicity and induction of apoptosis in human leukemia cells. Biorg Med Chem. 2009; 17(6): 2576-2584. PubMed, CrossRef
  26. Michalic L, Desverge B, Wahli W. Peroxisome-proliferator-activated receptors and cancers: complexes stories. Nat Rev Cancer. 2004; 4(1): 61-70. PubMed, CrossRef
  27. Kubota T, Koshizuka K, Williamson EA, Asou H, Said JW, Holden S, Miyoshi I, Koeffler P. Ligand for peroxisome proliferator-activated receptor γ (Troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo. Cancer Res. 1998; 58(15): 3344-3352.  PubMed
  28. Ammazzalorso A, De Filippis B, Giampietro L, Amoroso R. Blocking the peroxisome proliferator‐activated receptor (PPAR): an overview. Chem Med Chem. 2013; 8(10): 1609-1616. PubMed, CrossRef
  29. Panigrahy D, Huang S, Kieran MW, Kaipainen A. PPARγ as a therapeutic target for tumor angiogenesis and metastasis. Cancer Biol Ther. 2005; 4(7): 687-693.  PubMed, PubMedCentral, CrossRef
  30. Cutshall NS, O’Day C, Prezhdo M. Rhodanine derivatives as inhibitors of JSP-1. Bioorg Med Chem Lett. 2005; 15(14): 3374-3379. PubMed, CrossRef
  31. Fu H, Hou X, Wang L, Dun Y, Yang X, Fang H. Design, synthesis and biological evaluation of 3-aryl-rhodanine benzoic acids as anti-apoptotic protein Bcl-2 Inhibitors. Bioorg Med Chem Lett. 2015; 25(22): 5265-5269.
    PubMed, CrossRef
  32. Liu W, Bulgaru A, Haigentz M, Stein CA, Perez-Soler R, Mani S. The Bcl2-family of protein ligands as cancer drugs: the next generation of therapeutics. Curr Med Chem. Anticancer Agents. 2003; 3(3): 217-223. PubMed, CrossRef
  33. Lugovskoy AA, Degterev AI, Fahmy AF, Zhou P, Gross JD, Yuan J, Wagner GA. A novel approach for characterizing protein ligand complexes: molecular basis for specificity of small-molecule Bcl-2 inhibitors. J Am Chem Soc. 2002; 124(7): 1234-1240. PubMed, CrossRef
  34. Xing C, Wang L, Tang X, Sham YY. Development of selective inhibitors for anti-apoptotic Bcl-2 proteins from BHI-1. Bioorg Med Chem. 2007; 15(5): 2167-2176.  PubMed, PubMedCentral, CrossRef
  35. Shiau CW, Yang CC, Kulp SK, Chen KF, Chen CS, Huang JW, Chen CS. Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARγ. Cancer Res. 2005; 65(4): 1561-1569. PubMed, PubMedCentral, CrossRef
  36. Tomašic T, Peterlin Mašic LP. Rhodanine as a scaffold in drug discovery: a critical review of its biological activities and mechanisms of target modulation. Expert Opin Drug Discov. 2012; 7(7): 549-560. PubMed, CrossRef
  37. Mendgen T, Steuer C, Klein CD. Privileged scaffolds or promiscuous binders: a comparative study on rhodanines and related heterocycles in medicinal chemistry. J Med Chem. 2012; 55(2): 743-753. PubMed, CrossRef
  38. Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010; 53(7): 2719-2740. PubMed, CrossRef
  39. Pinson JA, Schmidt-Kittler O, Frazzetto M, Zheng Z, Jennings IG, Kinzler KW, Vogelstein B, Chalmers DK, Thompson E. Synthesis and pharmacological evaluation of 4-iminothiazolidinones for inhibition of PI3 kinase. Aust J Chem. 2012; 65(10): 1396-1404.  PubMed, PubMedCentral, CrossRef
  40. Zhou H, Wu S, Zhai S, Liu A, Sun Y, Li R, Zhang Y, Ekins S, Swaan PW, Fang B, Zhang B, Yan B. Design, synthesis, cytoselective toxicity, structure activity relationships, and pharmacophore of thiazolidinone derivatives targeting drug-resistant lung cancer cells. J Med Chem. 2008; 51(5): 1242-1251. PubMed, CrossRef
  41. Smelcerovic Z, Veljkovic A, Kocic G, Yancheva D, Petronijevic Z, Anderluh M, Smelcerovic A. Xanthine oxidase inhibitory properties and anti-inflammatory activity of 2-amino-5-alkylidene-thiazol-4-ones. Chem Biol Interact. 2015; 229: 73-81. PubMed, CrossRef
  42. Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem. 2005; 48(21): 6523-6543. PubMed, CrossRef
  43. Ge X, Wakim B, Sem DS. Chemical proteomics-based drug design: target and antitarget fishing with a catechol − rhodanine privileged scaffold for NAD(P)(H) binding proteins. J Med Chem. 2008; 51(15): 4571-4580. PubMed, CrossRef
  44. Kryshchyshyn AP, Atamanyuk DV, Kaminskyy DV, Grellier Ph, Lesyk RB. Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety. Biopolym Cell. 2017; 33(3): 183-205. CrossRef
  45. Kryshchyshyn A, Roman O, Lozynskyi A, Lesyk R. Thiopyrano[2,3-d]thiazoles as new efficient scaffolds in medicinal chemistry. Sci Pharm. 2018; 86(2): 26. PubMed, PubMedCentral, CrossRef
  46. Kavitha CV, Chandrappa S, Narasimhamurthy KH, Rangappa KS. Synthesis and evaluation of 5-((5-(4-methoxyphenyl)furan-2-yl) methylene)thiazolidine-2,4-diones as a new class of cytotoxic agents for leukemia treatment. Asian J Biochem Pharm Res. 2014; 4: 309-323.
  47. Kaminskyy D, Subtel’na I, Zimenkovsky B, Karpenko O, Gzella A, Lesyk R. Synthesis and evaluation of anticancer activity of 5-ylidene-4-aminothiazol-2(5H)-one derivatives. Med Chem. 2015; 11(6): 517-530. PubMed, CrossRef
  48. Liu X, Zu YG, Fu YJ, Yao LP, Gu CB, Wang W, Efferth T. Antimicrobial activity and cytotoxicity towards cancer cells of Melaleuca alternifolia (teatree) oil. Eur Food Res Technol. 2009; 229(2): 247-253. CrossRef
  49. Litchfield JT, Wilcoxon F. A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther. 1949; 96(2): 99-113. PubMed
  50. Andersson LC, Nilsson K, Gahmberg CG. K562—a human erythroleukemic cell line. Int J Cancer. 1979; 23(2): 143-147.
    PubMed, CrossRef
  51. Greenberg SM, Rosenthal DS, Greeley TA, Tantravahi R, Handin RI. Characterization of a new megakaryocytic cell line: the Dami cell. Blood. 1988; 72(6): 1968-1977. PubMed, CrossRef
  52. Saito H. 3 Megakaryocytic cell lines. Baillieres Clin Haematol. 1997; 10(1): 47-63. PubMed, CrossRef
  53. Collins SJ. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood. 1987; 70(5): 1233-1244. PubMed, CrossRef
  54. Abraham RT, Weiss A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat Rev Immunol. 2004; 4(4): 301-308. PubMed, CrossRef
  55.  Smith WG. 1 Pharmacological Screening Tests. Eds. Ellis GP, West GB. Progress in Medicinal Chemistry. 1961; 1: 1-33. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.