Tag Archives: rhabdomyolysis

C(60) fullerene attenuates the signs of acute renal failure in rats under rhabdomyolysis due to inhibition of oxidative stress

O. Omelchuk1, S. Prylutska2, D. Nozdrenko3,
O. Motuziuk1,3, I. Vareniuk3, K. Bogutska3,
O. Vygovska4, А. Zholos3, Yu. Prylutskyy3*

1Lesya Ukrainka Volyn National University, Lutsk, Ukraine;
2National University of Life and Environmental Science of Ukraine, Kyiv, Ukraine;
3Taras Shevchenko National University of Kyiv, Ukraine;
*e-mail: prylut@ukr.net;
4Bogomolets National Medical University, Kyiv, Ukraine

Received: 14 August 2023; Revised: 18 September 2023;
Accepted: 27 October 2023; Available on-line: 06 November 2023

Rhabdomyolysis, as an acute stage of myopathy is known to be associated with the accumulation of muscle breakdown products, acute renal failure and oxidative stress. The goal of the study was to evaluate the effect of C60 fullerene as an antioxidant on kidney damage in the model of glycerol-induced rhabdomyolysis in rats. The study was conducted on male Wistar rats, divided into the following experimental groups: control animals, animals intramuscularly injected with glycerol in a doses of 5, 10 and 15 mg/kg and those intraperitoneally injected daily with C60 fullerene aqueous solution (C60FAS) in a dose of 1 or 2 mg/kg at 48 h after glycerol administration­. Monitoring of the biochemical and morphological indicators was carried out on 3rd, 6th and 9th days of the experiment. A close correlation between the acute renal damage severity, increased creatinine and urea level, superoxide dismutase (SOD) and catalase (CAT) activity in the blood of rats was observed. It was shown that in rats which received 2 mg/kg of C60FAS the renal glomeruli size and necrosis manifestations were attenuated, whereas SOD and CAT activity in the blood was significantly decreased. The results obtained may be useful for developing approaches to the treatment of pathological conditions of the muscular system caused by rhabdomyolysis and associated oxidative stress.

Rhabdomyolysis attenuates activity of semicarbazide sensitive amine oxidase as the marker of nephropathy in diabetic rats

O. Hudkova*, I. Krysiuk, L. Drobot, N. Latyshko

Department of Cell Signaling, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
*e-mail: ogudkova@biohem.kiev.ua

Received: 22 December 2021; Accepted: 21 January 2022

Amine oxidases are involved in the progression of many diseases and their complications, including renal failure, due to the generation of the three toxic metabolites (H2O2, aldehydes, and ammonia) in the course of biogenic amines oxidative deamination. The participation of the first two products in kidney pathogenesis was confirmed, whereas the role of ammonia as a potential inducer of the nitrozative stress is not yet understood. The aim of the present study was to test how further intensification of oxidative stress would affect diabetes-mediated metabolic changes. For this purpose, a rat model of glycerol-induced rhabdomyolysis, as a source of powerful oxidative stress due to the release of labile Fe3+ from ruptured myocytes, on the background of streptozotocin-induced diabetes was used. The experimental animal groups were as follows: group 1 – ‘Control’, group 2 – ‘Diabetes’, group 3 – ‘Diabetes + rhabdomyolysis’. A multifold increase in semicarbazide sensitive amine oxidase (SSAO) activity in the kidney and blood, free radicals (FR), MetHb and 3-nitrotyrosine (3-NT) levels in the blood, as well as the emergence of HbNO in plasma and dinitrosyl iron complexes (DNICs) in the liver of animals in group 2 as compared to control were revealed. An additional increase in FR, HbNO levels in the blood, and DNICs in the liver of animals in the diabetes + rhabdomyolysis group as compared to the diabetes group, which correlated with the appearance of a large amount of Fe3+ in the blood of group 3 animals, was detected. Unexpectedly, we observed the positive regulatory effects in animals of the diabetes + rhabdomyolysis group, in particular, a decreased SSAO activity in the kidney and 3-NT level in plasma, as well as the normalization of activity of pro- and antioxidant enzymes in the blood and liver compared to animals of diabetes group. These consequences mediated by rhabdomyolysis may be the result of NO exclusion from the circulation due to the excessive formation of NO stable complexes in the blood and liver. The data obtained allow us to consider SSAO activity as a marker of renal failure in diabetes mellitus. In addition, we suggest a significant role of nitrosative stress in the development of pathology, and, therefore, recommend NO-traps in the complex treatment of diabetic complications.

Labile iron pool formation in rat’s blood under rhabdomyolysis

S. G. Shandrenko

Palladin Institute of Biochemistry, National Academy of Siences of Ukraine, Kyiv;
e-mail: shangr-s@yandex.ru

The labile nonheme iron pool formation in blood under glycerol induced rhabdomyolysis in rats has been investigated. This iron is not included in transferrin, thereby it is redox-active. Rhabdomyolysis was caused by intramuscular injection of 50% glycerol in a dose of 10 ml/kg. In the first day it has been registered that the blood plasma free heme content increased 10 times and the liver heme-oxigenase activity increased 6 times. Plasma redox-active iron pool formation has been registered by EPR method. Such iron was absent in the control group. This iron pool content in the interval from the 1st to the 6st day was more than 2 mg/l and significantly higher than the transferrin iron level. The plasma iron pool unshielded by transferrin may be one of oxidative stress causes.

Carbohydrate and nitrogenous metabolism condition in the rat tissue under experimental rhabdomyolysis

P. A. Kaliman, S. M. Okhrimenko

Karazin Kharkiv National University, Ukraine;
e-mail: s.okhrimenko@mail.ru

Some effects of glycerol injection on indices of the condition of the thiol-disulfide system as well as carbohydrate and nitrogen metabolism in rats in vivo were studied. A decrease was revealed in levels of non-protein SH-groups in the liver, kidney and heart, as well as of protein SH-groups in the kidney and heart of rats following glycerol injection. That might be connected with SH-group oxidation under the excessive arrival of free haem into tissues under rhabdomyolysis. A decrease in glycogen and  increase in tyrosine aminotransferase activity in the liver were observed. Activation of nitrogenous metabolism following glycerol injection is indicated by the increase of aminotransferase activity in organs, and concentration of blood urea. High concentration of creatinine in the rat serum can reflect malfiltration in kidneys.

Amine oxidases as important agents of pathological processes of rhabdomyolysis in rats

O. O. Gudkova, N. V. Latyshko, S. G. Shandrenko

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: ogudkova@biochem.kiev.ua

In this study we have tested an idea on the important role of amine oxidases (semicarbazide-sensitive amine oxidase, diamine oxidase, polyamine oxidase) as an additional source of oxidative/carbonyl stress under glycerol-induced rhabdomyolysis, since the enhanced formation of reactive oxygen species and reactive carbonyl species in a variety of tissues is linked to various diseases. In our experiments we used the sensitive fluorescent method devised for estimation of amine oxidases activity in the rat kidney and thymus as targeted organs under rhabdomyolysis. We have found in vivo the multiple rises in activity of semicarbazide-sensitive amine oxidase, diamine oxidase, polyamine oxidase (2-4.5 times) in the corresponding cell fractions, whole cells or their lysates at the 3-6th day after glycerol injection. Aberrant antioxidant activities depended on rhabdomyolysis stage and had organ specificity. Additional treatment of animals with metal chelator ‘Unithiol’ adjusted only the activity of antioxidant enzymes but not amine oxidases in both organs. Furthermore the in vitro experiment showed that Fenton reaction (hydrogen peroxide in the presence of iron) products alone had no effect on semicarbazide-sensitive amine oxidase activity in rat liver cell fraction whereas supplementation with methylglyoxal resulted in its significant 2.5-fold enhancement. Combined action of the both agents had additive effect on semicarbazide-sensitive amine oxidase activity. We can assume that biogenic amine and polyamine catabolism by amine oxidases is upregulated by oxidative and carbonyl stress factors directly under rhabdomyolysis progression, and the increase in catabolic products concentration contributes to tissue damage in glycerol-induced acute renal failure and apoptosis stimulation in thymus.