Ukr.Biochem.J. 2014; Volume 86, Issue 6, Nov-Dec, pp. 66-73

doi: https://doi.org/10.15407/ubj86.06.066

Signal function of cytokinin 6-benzylaminopurine in the reaction of Triticum aestivum L. mesophyll cells to hyperthermia

M. M. Musienko, V. V. Zhuk, L. M. Batsmanova

ESC Institute of Biology, Taras Shevchenko National University of Kyiv, Ukraine;
e-mail: zhuk_bas@voliacable.com

The signaling effect of 6-benzylaminopurine (BAP) on leaf mesophyll cells of Triticum aestivum L. under hyperthermic conditions was studied­. It was found that BAP regulated photosynthetic pigment, hydrogen peroxide content and activity of antioxidant enzymes, namely superoxide dismutase, ascorbate peroxidase and catalase under high-temperature conditions. The additive effect of BAP and high temperature on the activation of cell antioxidant systems was demonstrated. BAP regulated reducing processes in mesophyll leaf cells under high-temperature conditions.

Keywords: , , , , , , ,


References:

  1. Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal. 2009 Apr;11(4):861-905. Review. PubMed, CrossRef
  2. Suzuki N, Mittler R. Reactive oxygen species and temperature stresses:a delicate balance between signaling and destruction. Physiol Plant. 2006 Jan;126(1):45-51. CrossRef
  3. Baker NR. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol. 2008;59:89-113. Review. PubMed, CrossRef
  4. Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011 Jan;155(1):2-18. Review.  PubMed,  PubMedCentral,  CrossRef
  5. Hung SH, Yu ChW, Lin ChY. Hydrogen peroxide functions as a sress signal in plants. Bot Bull Acad Sin. 2005;46:1-10.
  6. Chiang YH, Zubo YO, Tapken W, Kim HJ, Lavanway AM, Howard L, Pilon M, Kieber JJ, Schaller GE. Functional characterization of the GATA transcription factors GNC and CGA1 reveals their key role in chloroplast development, growth and division in Arabidopsis. Plant Physiol. 2012 Sep;160(1):332-48.  PubMed,  PubMedCentralCrossRef
  7. Argueso CT, Raines T, Kieber JJ. Cytokinin signaling and transcriptional networks. Curr Opin Plant Biol. 2010 Oct;13(5):533-9. Review.  PubMed,  CrossRef
  8. Kolysnyk A., Musienko N. The use of different biological tests to study cytokinin activity of pyridine N-oxides. Eur Appl Sci. 2013;(1-2):5‑8.
  9. Zubo YO, Yamburenko MV, Selivankina SY, Shakirova FM, Avalbaev AM, Kudrya­kova NV, Zubkova NK, Liere K, Kulaeva ON, Kusnetsov VV, Börner T. Cytokinin stimulates chloroplast transcription in detached barley leaves. Plant Physiol. 2008 Oct;148(2):1082-93.   PubMed,  PubMedCentral,  CrossRef
  10. Zavaleta-Mancera HA, López-Delgado H, Loza-Tavera H, Mora-Herrera M, Trevilla-García C, Vargas-Suárez M, Ougham H. Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J Plant Physiol. 2007 Dec;164(12):1572-82.  PubMed, CrossRef
  11. Musienko M, Zhuk V. Effect of exogenous cytokinin on wheat tolerance under drought conditions. Bull Agricult Sci. 2011;695(3):34-36. (In Ukrainian).
  12. Zhuk V, Musienko M. The application of natural cytokinines analog for decreasing negative effect of water deficit on cereals productivity. Agroecol. Zhurn. 2011;(Spec. Issue):60-62. (In Ukrainian).
  13. Zhuk VV, Musienko MM. The structure of cell chloroplasts of spring cereals. Modern Phytomorphol. 2012;2:137-139.
  14. Buschman C, Landsdorf G, Lichtenthaler HK. Imaging of the blue, green and red fluorescence emission of plants: an overview. Photosynthetica. 2000;38(4):483-491. CrossRef
  15. Roshchina VV, Yashin VA, Kononov AV. Autofluorescence of developing plant vegetative microspores studied by confocal microscopy and microspectrofluorimetry. J Fluoresc. 2004 Nov;14(6):745-50.  PubMed, CrossRef
  16. Christ B, Schelbert S, Aubry S, Süssenbacher I, Müller T, Kräutler B, Hörtensteiner S. MES16, a member of the methylesterase protein family, specifically demethylates fluorescent chlorophyll catabolites during chlorophyll breakdown in Arabidopsis. Plant Physiol. 2012 Feb;158(2):628-41.  PubMed,  PubMedCentral,  CrossRef
  17. Keskitalo J, Bergquist G, Gardeström P, Jansson S. A cellular timetable of autumn senescence. Plant Physiol. 2005 Dec;139(4):1635-48.  PubMed,  PubMedCentral,  CrossRef
  18. Lichtenthaler HK. Chlorophyls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350-382.   CrossRef
  19. Brouers M, Michel-Wolwertz MR. Estimation of protochlorophyll(ide) contents in plants in plant extracts: re-evaluation of molar absorption coefficient of protochlorophyll(ide). Photosynth Res. 1983 Sep;4(3):265-70.  PubMed,  CrossRef
  20. Wymer CL, Beven AF, Boudonck K, Lloyd CW. Confocal microscopy of plant cells. Methods Mol Biol. 1999;122:103-30. Review.  PubMed
  21. Chen LM, Kao CH. Effect of excess copper on rice leaves: evidence for involvement of lipid peroxidation. Bot Bull Acad Sin. 1999;40:283-287.
  22. Rios-Gonzalez K., Erdei L., Lips S. H. The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Sci. 2002 Jun;162(6):923-30.  CrossRef
  23. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22(5):867-880.
  24. Beyer WF Jr, Fridovich I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem. 1987 Mar;161(2):559-66.  PubMed,  CrossRef
  25. Upadhyaya A, Sankhla D, Davis TD, Sankhla N, Smith BN. Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. J Plant Physiol. 1985 Dec;121(5):453-61.  CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.