Ukr.Biochem.J. 2015; Volume 87, Issue 4, Jul-Aug, pp. 78-86


The alkaloid-free fraction from Galega officinalis extract prevents oxidative stress under experimental diabetes mellitus

M. I. Lupak, M. R. Khokhla, G. Ya. Hachkova, O. P. Kanyuka,
N. I. Klymyshyn, Ya. P. Chajka, M. I. Skybitska, N. O. Sybirna

Ivan Franko National University of Lviv, Ukraine;

The effect of alkaloid-free fraction from Galega officinalis extract on the process of formation of reactive oxygen species and indicators of prooxidant-antioxidant balance was investigated in rat peri­pheral blood under conditions of experimental diabetes mellitus. It was shown that alkaloid-free fraction from Galega officinalis extract prevents oxidative stress development in rats with streptozotocin-induced diabetes, providing antioxidant and antiradical mobilization mechanisms to protect the blood system. In the case of extract application to animals with studied­ pathology, one can observe a reducing effect of reactive oxygen species generation in leukocytes, inhibition of proteins and lipids oxidative modification processes and increased activity of key enzymes of rat peripheral blood antioxidant system (superoxide dismutase, catalase and glutathione peroxidase). The revealed biological effect could be explained by the presence of biologically active substances with antioxidant properties in the extract composition (phytol and flavonoids).

Keywords: , ,


  1. Lee HB, Ha H, King GL. Reactive Oxygen Species and Diabetic Nephropathy. J Am Soc Nephrol. 2003 Aug;14(3): S209-210. CrossRef
  2. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007 Jan;87(1):315-424. Review. PubMed, CrossRef
  3. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005 Jun;54(6):1615-25. PubMed, CrossRef
  4. Schmitz HD. Reversible nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase upon serum depletion. Eur J Cell Biol. 2001 Jun;80(6):419-27. PubMed, CrossRef
  5. Drel VR. Main mechanisms of the initiation and development of diabetic complications: the role of nitrative stress. Studia Biologica.  2010;4(2):141-158. (In Ukrainian).
  6. Kozlovskyy VY, Akulenok AV. Leukocyte activation, role in endothelial damage and in development of cardiovascular disease. Vestnyk VHMU. 2005;4(2):5-13. (In Russian).
  7. Baskurt OK, Meiselman HJ. Activated polymorphonuclear leukocytes affect red blood cell aggregability. J Leukoc Biol. 1998 Jan;63(1):89-93. PubMed
  8. de Menezes Patrício Santos СС, Salvadori MS, Mota VG, Costa LM, de Almeida AAC Lopes de Oliveira GA, Costa JP, de Sousa DP, de Freitas RM, de Almeida RN. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neurosci J. 2013;2013:1-9. CrossRef
  9. Sarkodie JA, Fleischer TC, Edoh DA, Dickson RA, Mensah MLK, Annan K, Woode E, Koffour GA, Appiah AA, Brew-Daniels H. Antihyperglycaemic activity of ethanolic extract of the stem of Adenia lobata Engl (Passifloraceae). Int J Pharm Sci Res. 2013;4(4):1370-7.
  10. Lee YM, Haastert B, Scherbaum W, Hauner H. A phytosterol-enriched spread improves the lipid profile of subjects with type 2 diabetes mellitus. A randomized controlled trial under free-living conditions. Eur J Nutr. 2003 Apr;42(2):111-117. PubMed, CrossRef
  11. Ram VJ, Farhanullah, Tripathi BK, Srivastava AK. Synthesis and antihyperglycemic activity of suitably functionalized 3H-quinazolin-4-ones. Bioorg Med Chem. 2003 May 29;11(11):2439-44. PubMedCrossRef
  12. Zenkov NK, Lankin VZ, Menshikova EB. Oxidative stress. M.: Science, 2001. 343 p. (In Russian).
  13. Derymedvid’ LV, Bukhtiarova IP. The investigation of angioprotective hypoglycohaemic properties of recombinant superoxide dismutase in ditizonovy diabetes in rabbits. Exp Clinic Medicine. 2006;1:17-20. (In Ukrainian).
  14. Uma MM, Sudarsanam D. Phytomedicine for Diabetes mellitus: An overview. Res. Pharmacy. 2011;1(4): 28-37.
  15. Khokhla M, Kleveta G, Chajka Ya, Skybitska M, Sybirna N. Cytological and biochemical characteristics of rats’ peripheral blood under the condition of experimental diabetes mellitus type 1 and Galega officinalis admission. Studia Biologica. 2012;6(1):3-46. (In Ukrainian).
  16. Khokhla M, Kleveta G, Lupak M, Kaniuka O, Chajka Ya, Skybitska M, Sybirna N. Studies of Galega officinalis extract component. Visnyk Lviv Univ Ser Biol. 2013;62:55-60. (In Ukrainian).
  17. Lupak M, Khokhla M, Hachkova G, Shulga O, Sheglova N, Vildanova R, Zyn А, Sybirna N. Application of biogenic surfactants for alkaloid-free fraction from Galega officinalis extract stabilization. Studia Biologica. 2015;9(1):5-16. (In Ukrainian).
  18. Lapovets L, Lutsyk B. Laboratory Immunology. K.: Aral, 2004. 173 р. (In Ukrainian).
  19. Csóvári S, Andyal T, Strenger J. Determination of the antioxidant properties of the blood and their diagnostic significance in the elderly. Lab Delo. 1991;(10):9-13. Russian. PubMed
  20. Korolyuk MA, Ivanova LI, Mayorova IG, Tokarev VE. A method of determining catalase activity. Lab Delo. 1988;(1):16-9. Russian. PubMed
  21. Moin VM. A simple and specific method for determining glutathione peroxidase activity in erythrocytes. Lab Delo. 1986;(12):724-7. Russian. PubMed
  22. Meshchyshen I. The determining method of proteins oxidative modification. Bukov Med Visnyk. 1999;1:196-205. (In Ukrainian).
  23. Timirbulatov RA, Seleznev EI. Method for increasing the intensity of free radical oxidation of lipid-containing components of the blood and its diagnostic significance. Lab Delo. 1981;(4):209-11. Russian. PubMed
  24. Dubinina EE, Pustygina AV. Oxidative modification of proteins, its role in pathologic states. Ukr Biokhim Zhurn. 2008 Nov-Dec;80(6):5-18. Review. Russian. PubMed
  25. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002 Oct;23(5):599-622. Review. PubMed, CrossRef
  26. Muravleva LE, Molotov-Luchanskiy VB, Klyuyev DA, Kultanov BJ, Tankibayeva NA, Kusainova DS, Tuleshova AM, Kaliyeva GT. Investigation of the erythrocytes oxidative metabolism in blood of patients with diabetic nephropathy. Mod High Techn. 2009;4:14-17. (In Russian).
  27. Stadtman ER, Oliver CN. Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem. 1991 Feb 5;266(4):2005-8. Review. PubMed
  28. Das N, Levine RL, Orr WC, Sohal RS. Selectivity of protein oxidative damage during aging in Drosophila melanogaster. Biochem J. 2001 Nov 15;360(Pt 1):209-16. PubMed, PubMedCentral, CrossRef
  29. Lushchak VI, Bahniukova TV, Lushchak OV. Indices of oxidative stress. 1. TBA-reactive substances and carbonylproteins. Ukr Biokhim Zhurn. 2004 May-Jun;76(3):136-41. Ukrainian. PubMed
  30. Tsydendambayev PB, Khyshiktuyev BS, Nikolayev SM. Biological effects of flavonoids. Bull East Siber Scient Cent SB RAMS. 2006;6(52):229-233. (In Russian).
  31. Atalay M., Laaksonen DE, Niskanen L, Uusitupa M, Hänninen O, Sen CK. Altered antioxidant enzyme defenses in insulin-dependent diabetic men with increased restingand exercise-induced oxidative stress. Acta Physiol Scand. 1997 Oct;161(2):195-201. PubMed, CrossRef
  32. Pereira B, Rosa LF, Safi DA, Bechara EJ, Curi R. Hormonal regulation of superoxide dismutase, catalase, and glutathione peroxidase activities in rat macrophages. Biochem Pharmacol. 1995 Dec 22;50(12):2093-8. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.