Ukr.Biochem.J. 2013; Volume 85, Issue 2, Mar-Apr, pp. 33-44


Action of free and polymer carrier encapsulated doxorubicin towards HCT116 cells of human colorectal carcinoma

Yu. V. Senkiv1,2,4, P. Heffeter2, A. O. Riabtseva3, N. M. Boiko1,
O. S. Zaichenko3, N. Ye. Mitina3, W. Berger2, R. S. Stoika1

1Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv;
2Institute for Cancer Research, Medical University of Vienna, Austria;
3National University Lviv Polytechnic, Ukraine;
4Ivan Franko Lviv National University, Ukraine;

Development of novel nanoscale functionali­zed carriers is nowadays one of the most urgent problems in cancer treatment.  The aim of our study was to compare the antineoplastic effect of free doxorubicin and its complex with a nanoscale polymeric carrier towards HTC116 colorectal carcinoma cells. It was established that application of the complex of poly(5-tret-butylperoxy)-5-methyl-1-hexene-3-in-co-glycydyl metacrylat)-graft-polyethyleneglycol (poly(VEP-GMA-PEG)-graft-PEG), where VEP  – 5-tret-butylperoxy)-5-methyl-1-hexene-3-in; GMA – glycydyl metacrylat; graft-PEG – graft-polyethyleneglycol accordingly, functionali­zed with phosphatidylcholine for doxorubicin delivery increased 10 times the efficiency of cytotoxic action of this drug, as compared wich such efficiency in case of the action of free doxorubicin. The encapsulated form of doxorubicin caused more intensive cleavage of the reparation enzyme PARP and longer delay in G2/M cell cycle arrest, compared to such effects of free doxorubicin. The developed carrier itself is non-toxic to the used mammalian cells and does not cause impairment in their cell cycle. A deletion in both alleles of p53 gene did not affect the antineoplastic action of doxorubicin that was immobilized on the nanoscale carrier. Thus, p53-dependent signaling pathways are not involved in the cytotoxic action of doxorubicin-carrier complex. It is suggested that novel nanoscale polymeric carrier poly(VEP-GMA-PEG)-graft-PEG functionalized with phosphatidylcholine could be a promising carrier for targeted delivery of anticancer drugs.

Keywords: , , , , ,


  1. Aguda BD. A quantitative analysis of the kinetics of the G(2) DNA damage checkpoint system. Proc Natl Acad Sci USA. 1999 Sep 28;96(20):11352-7. PubMed, PubMedCentralCrossRef
  2. Basu S, Harfouche R, Soni S, Chimote G, Mashelkar RA, Sengupta S. Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy. Proc Natl Acad Sci USA. 2009 May 12;106(19):7957-61.  PubMed, PubMedCentralCrossRef
  3. Glavinas H, Krajcsi P, Cserepes J, Sarkadi B. The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv. 2004 Jan;1(1):27-42. Review. PubMedCrossRef
  4. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002 Jan;2(1):48-58. Review. PubMed, CrossRef
  5. Horák D, Shagotova T, Mitina N, Trchova M, Boiko N, Babic M, Stoika R, Kovarova J, Hevus O, Benes MJ, Klyuchivska O, Holler P, Zaichenko A. Surface-initiated polymerization of 2-hydroxyethyl methacrylate from heterotelechelic oligoperoxide-coated γ-Fe2O3 nanoparticles and their engulfment by mammalian cells. Chem Mater. 2011;23(10):2637–2649. CrossRef
  6. Hu CM, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol. 2012 Apr 15;83(8):1104-11. PubMed, CrossRef
  7. Jiang K, Pereira E, Maxfield M, Russell B, Goudelock DM, Sanchez Y. Regulation of Chk1 includes chromatin association and 14-3-3 binding following phosphorylation on Ser-345. J Biol Chem. 2003 Jul 4;278(27):25207-17. PubMed, CrossRef
  8. Laemmli UK. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 1970;227(5259):680-685. PubMed, CrossRef
  9. Lee JG, Kim JH, Ahn JH, Lee KT, Baek NI, Choi JH. Jaceosidin, isolated from dietary mugwort (Artemisia princeps), induces G2/M cell cycle arrest by inactivating cdc25C-cdc2 via ATM-Chk1/2 activation. Food Chem Toxicol. 2013 May;55:214-21. PubMed, CrossRef
  10. Locatelli E, Broggi F, Ponti J, Marmorato P, Franchini F, Lena S, Franchini MC. Lipophilic silver nanoparticles and their polymeric entrapment into targeted-PEG-based micelles for the treatment of glioblastoma. Adv Healthc Mater. 2012 May;1(3):342-7. PubMed, CrossRef
  11. Magnarin M, Morelli M, Rosati A, Bartoli F, Candussio L, Giraldi T, Decorti G. Induction of proteins involved in multidrug resistance (P-glycoprotein, MRP1, MRP2, LRP) and of CYP 3A4 by rifampicin in LLC-PK1 cells. Eur J Pharmacol. 2004 Jan 1;483(1):19-28. PubMedCrossRef
  12. Manabe N, Hoshino A, Liang YQ, Goto T, Kato N, Yamamoto K. Quantum dot as a drug tracer in vivo. IEEE Trans Nanobioscience. 2006 Dec;5(4):263-7. PubMed, CrossRef
  13. O’Connell MJ, Walworth NC, Carr AM. The G2-phase DNA-damage checkpoint. Trends Cell Biol. 2000 Jul;10(7):296-303. Review. PubMed, CrossRef
  14. Peterson GL. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346-56. PubMed, CrossRef
  15. Ramge P, Unger RE, Oltrogge JB, Zenker D, Begley D, Kreuter J, Von Briesen H. Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells. Eur J Neurosci. 2000 Jun;12(6):1931-40. PubMedCrossRef
  16. Senkiv Yu, Ryabtseva A, Heffeter P, Boyko N, Shlyahtina Ye, Mitina N, Berger V, Zaichenko OS, Stoika RS. Immobilization of doxorubicin on oligoelectrolyte polymeric VEP-GMA-PEG  carrier  enhances  delivery  of  this anticancer  agent  in  tumor  cells  and  efficiency of  its  cytotoxic  action. Studia Biologica. 2012;6(2):1-12. (In Ukrainian).
  17. Wong HL, Bendayan R, Rauth AM, Xue HY, Babakhanian K, Wu XY. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J Pharmacol Exp Ther. 2006 Jun;317(3):1372-81. PubMed, CrossRef
  18. Wu B, Li W, Qian C, Zhou Z, Xu W, Wu J. Down-regulated P53 by siRNA increases Smad4’s activity in promoting cell apoptosis in MCF-7 cells. Eur Rev Med Pharmacol Sci. 2012 Sep;16(9):1243-8. PubMed
  19. Zaichenko A, Mitina N, Shevchuk O,  Shapoval O,  Boiko N, Bilyy R, Stoika R, Voloshinovskii A, Horak D, Borsella E. Oligoperoxide based physically detectable nanocomposites for cell targeting, visualization and treatment. AIP Conference Proceedings. 2010;1275:178-182. CrossRef
  20. Zhao H, Piwnica-Worms H. ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol. 2001 Jul;21(13):4129-39. PubMed, PubMedCentral, CrossRef
  21. Rabek J. F. Experimental Methods in Polymer Chemistry. Part 1, 2. M.: Mir, 1983. 862 p.
  22. Sopin IeF, Vinogradova RP. Fundamentals of biochemical research methods. K.: Vyshcha Shkola, 1975. 244 p.
  23. Toroptseva AM. Laboratory practice book on chemistry and technology of high-molecular compounds. L.: Khimiya, 1972. 416 p.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.