Ukr.Biochem.J. 2016; Volume 88, Issue 4, Jul-Aug, pp. 29-39

doi: https://doi.org/10.15407/ubj88.04.029

Changes in oxidative stress intensity in blood of tumor-bearing rats following different modes of administration of rhenium-platinum system

K. L. Shamelashvili1, N. I. Shtemenko2, І. V. Leus3, S. O. Babiy4, O. V. Shtemenko5

 1SE “Dnipropetrovsk Medical Academy” of Health Ministry of Ukraine;
2Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
3University of Oklahoma, Oklahoma-city, USA;
4Institute of Gastroenterology, National Academy of Medical Sciences
of Ukraine, Dnipropetrovsk;
5Ukrainian State University of Chemical Technology, Dnipropetrovsk;
e-mail: shamelashvili@rambler.ru

Effects of the different modes of administration of dichlorotetra-μ-isobutyratodirhenium(ІІІ) – І – (in water solution, liposomes, nanoliposomes and together with cisplatin – in the rhenium-platinum system) on the intensity of lipid peroxidation (LP) in blood plasma and the activity of the erythrocyte antioxidant enzymes were investigated on the model of tumor growth. A decrease in the concentration of TBA-active substances caused by dirhenium compounds was shown to be independent of the administration mode and the extent of the tumor growth inhibition. I was four-times more effective in inhibition of the LP burst than any known antioxidant. I induced the increasing activity of erythrocyte superoxide dismutase and decreasing activity of catalase. In vitro experiments with native superoxide dismutase, the interaction of І with following activation of the active center of the enzyme was confirmed and the superoxide dismutase activity of І was shown, that may contribute to the enhancement of the enzyme activity in vivo. The cluster rhenium compounds may be promising nontoxic potent antioxidants capable of deactivating superoxide radicals.

Keywords: , , , , ,


References:

  1. Shtemenko N, Collery P, Shtemenko A. Dichlorotetra-mu-Isobutyratodirhenium(III): enhancement of cisplatin action and RBC-stabilizing properties. Anticancer Res. 2007 Jul-Aug;27(4B):2487-92. PubMed
  2. Li Z, Shtemenko NI, Yegorova DY, Babiy SO, Brown AJ, Yang T, Shtemenko AV, Dunbar KR. Liposomes loaded with a dirhenium compound and cisplatin: preparation, properties and improved in vivo anticancer activity. J Liposome Res. 2015 Mar;25(1):78-87. PubMed, CrossRef
  3. Leus IV, Shamelashvili KL, Skoryk OD, Tretyak SIu, Golichenko OA, Shtemenko OV, Shtemenko NI.  Antioxidant and antitumor activity of dirhenium dicarboxylates in animals with guerin carcinoma. Ukr Biokhim Zhurn. 2012 May-Jun;84(3):72-81. (In Ukrainian). PubMed
  4. Andreeva LI, Kozhemiakin LA, Kishkun AA. Modification of the method of determining lipid peroxidation in a test using thiobarbituric acid. Lab Delo. 1988;(11):41-3. (In Russian). PubMed
  5. Kostiuk VA, Potapovich AI, Kovaleva ZhV. [A simple and sensitive method of determination of superoxide dismutase activity based on the reaction of quercetin oxidation]. Vopr Med Khim. 1990 Mar-Apr;36(2):88-91. (In Russian). PubMed
  6. Koroliuk MA, Ivanova LI, Maĭorova IG, Tokarev VE. A method of determining catalase activity. Lab Delo. 1988;(1):16-9. (In Russian). PubMed
  7. Yablonsky SV, Filinska AM. Evaluation of hepatotoxicity of novel maleimide derivative with cytostatic activity and its effect on peroxidation process and antioxidant system in the liver. Ukr Biokhim Zhurn. 2009 Sep-Oct;81(5):83-92. (In Ukrainian). PubMed
  8. Leus IV, Klenina IO, Zablotska KA, Golichenko OA, Shtemenko OV, Shtemenko NI. Interaction of serum albumins with cluster rhenium compounds of cis- and trans-configuration. Biopolym Cell. 2011; 27(6):465-471. CrossRef
  9. Seeta Rama Raju G, Benton L, Pavitra E, Yu JS. Multifunctional nanoparticles: recent progress in cancer therapeutics. Chem Commun (Camb). 2015 Sep 4;51(68):13248-59. PubMed, CrossRef
  10.  Nikoliс-Kokiс A, Blagojeviс D, Spasiс M.  Complexity of free radical Metabolism in human Erythrocytes. J Med Biochem 2010; 29(3): 189-195. CrossRef
  11. Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med. 2011 Aug;32(4-6):234-46. PubMed, CrossRef
  12. Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Kumar MN. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J Control Release. 2006 Jul 20;113(3):189-207. PubMed, CrossRef
  13. Ognjanović BI, Pavlović SZ, Maletić SD, Zikić RV, Stajn AS, Radojicić RM, Saicić ZS, Petrović VM. Protective influence of vitamin E on antioxidant defense system in the blood of rats treated with cadmium. Physiol Res. 2003;52(5):563-70. PubMed
  14. Jungwirth U, Kowol CR, Keppler BK, Hartinger CG, Berger W, Heffeter P. Anticancer activity of metal complexes: involvement of redox processes. Antioxid Redox Signal. 2011 Aug 15;15(4):1085-127. PubMed, PubMedCentral, CrossRef
  15. Spasojevic I. Electron paramagnetic resonance – A powerful tool of medical biochemistry in discovering mechanisms of disease and treatment prospects.
    J Med Biochem. 2010 Jan 1; 29(3): 175–188. CrossRef
  16. Turrens JF, Crapo JD, Freeman BA. Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase. J Clin Invest. 1984 Jan;73(1):87-95. PubMed, PubMedCentral, CrossRef
  17. Muscoli C, Cuzzocrea S, Riley DP, Zweier JL, Thiemermann C, Wang ZQ, Salvemini D. On the selectivity of superoxide dismutase mimetics and its importance in pharmacological studies. Br J Pharmacol. 2003 Oct;140(3):445-60. PubMed, PubMedCentral, CrossRef
  18. Uchida K, Kawakishi S. Identification of oxidized histidine generated at the active site of Cu,Zn-superoxide dismutase exposed to H2O2. Selective generation of 2-oxo-histidine at the histidine 118. J Biol Chem. 1994 Jan 28;269(4):2405-10. PubMed
  19. Voronkova YS, Babiy SO, Ivans’ka LV, Shtemenko OV, Shtemenko NI. Antioxidant properties of cluster rhenium compounds and their effect on erythropoiesis of rats with guerin carcinoma. Ukr Biochem J. 2015 Jan-Feb;87(1):99-108. (In Ukrainian). PubMed, CrossRef
  20. Weidt SK, Mackay CL, Langridge-Smith PR, Sadler PJ. Platination of superoxide dismutase with cisplatin: tracking the ammonia ligands using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Chem Commun (Camb). 2007 May 7;(17):1719-21. PubMed, CrossRef
  21. Lushchak VI. Classification of oxidative stress based on its intensity. EXCLI J. 2014 Aug 26;13:922-37. PubMed, PubMedCentral
  22. Lushchak VI. Dissection of the hormetic curve: analysis of components and mechanisms. Dose Response. 2014 Apr 11;12(3):466-79. PubMed, PubMedCentral, CrossRef
  23. Khynriam D, Prasad SB. Changes in endogenous tissue glutathione level in relation to murine ascites tumor growth and the anticancer activity of cisplatin. Braz J Med Biol Res. 2003 Jan;36(1):53-63. PubMed, CrossRef
  24. Ferreira ST, Stella L, Gratton E. Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-resolved fluorescence spectroscopy of the single tyrosine residue. Biophys J. 1994 Apr;66(4):1185-96. PubMed, PubMedCentral, CrossRef
  25. González-Alvarez M, Alzuet G, Borrás J, Castillo Agudo L, Montejo-Bernardo JM, García-Granda S. Development of novel copper(II) complexes of benzothiazole- N-sulfonamides as protective agents against superoxide anion. Crystal structures of [Cu( N-2-(4-methylbenzothiazole)benzenesulfonamidate)(2)(py)(2)] and [Cu( N-2-(6-nitrobenzothiazole)naphthalenesulfonamidate)(2)(py)(2)]. J Biol Inorg Chem. 2003 Jan;8(1-2):112-20.  PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.