Ukr.Biochem.J. 2016; Volume 88, Issue 5, Sep-Oct, pp. 48-61


Calix[4]arene C-90 and its analogs activate ATPase of the myometrium myosin subfragment-1

R. D. Labyntseva1, O. V. Bevza1, K. V. Lytvyn1, M. O. Borovyk1,
R. V. Rodik2, V. I. Kalchenko2, S. O. Kosterin1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
2Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv;

Numerous female reproductive abnormalities are consequences of disorders in uterus smooth muscle (myometrium) contractile function. In this work, we described activators of ATPase, which could be used for development of effective treatments for correcting this dysfunction. Myosin ATPase localized in the catalytic domain of myosin subfragment-1 transforms a chemical energy deposited in macroergic bonds of ATP into mechanical movement. It was shown that сalix[4]arene C-90 and its structural analogs functionalized at the upper rim of macrocycle with four or at least two N-phenylsulfonуltrifluoroacetamidine groups, are able to activate ATP hydrolysis catalyzed by myometrium myosin subfragment-1. It was shown with the method of computer modeling that N-phenylsulfonуltrifluoroacetamidine groups of calix[4]arene C-90 interact with responsible for binding, coordination and the hydrolysis of ATP amino acid residues of myosin subfragment-1. The results can be used for further research aimed at using calix[4]arene C-90 and its analogs as pharmacological compounds that can effectively normalize myometrium contractile hypofunction.

Keywords: , , , ,


  1. Burghardt TP, Neff KL, Wieben ED, Ajtai K. Myosin individualized: single nucleotide polymorphisms in energy transduction. BMC Genomics. 2010 Mar 15;11:172. PubMed, PubMedCentral, CrossRef
  2. Decarreau JA, James NG, Chrin LR, Berger CL. Switch I closure simultaneously promotes strong binding to actin and ADP in smooth muscle myosin. J Biol Chem. 2011 Jun 24;286(25):22300-7. PubMed, PubMedCentral, CrossRef
  3. Bloemink MJ, Melkani GC, Bernstein SI, Geeves MA. The Relay/Converter Interface Influences Hydrolysis of ATP by Skeletal Muscle Myosin II. J Biol Chem. 2016 Jan 22;291(4):1763-73.  PubMed, PubMedCentral, CrossRef
  4. Wray S. Insights from physiology into myometrial function and dysfunction. Exp Physiol. 2015 Dec;100(12):1468-76. PubMed, CrossRef
  5. Rodik RV, Boyko VI, Kalchenko VI. Calixarenes in bio-medical researches. Curr Med Chem. 2009;16(13):1630-55. Review. PubMed
  6. Nimse SB, Kim T. Biological applications of functionalized calixarenes. Chem Soc Rev. 2013 Jan 7;42(1):366-86. Review. PubMed, CrossRef
  7. Labyntseva RD, Slinchenко NM, Vеklіch ТО, Rodik RV, Chеrеnоk SО, Boiko VI, Kalchenko VI, Kоstеrіn SО. Comparative investigation of calixarenes influence on Mg2+-dependent ATP-hydrolase enzymatic systems from smooth muscle cells of the uterus. Ukr Biokhim Zhurn. 2007 May-Jun;79(3):44-54.  (In Ukrainian). PubMed
  8. Veklich TO, Shkrabak AA, Mazur YuYu, Rodik RV, Kalchenko VI, Kosterin SO. Kinetics of inhibitory effect of calix[4]arene C-90 on activity of transporting plasma membrane Cа2+, Mg2+-ATPase of smooth muscle cells. Ukr Biochem J. 2014 Sep-Oct;86(5):37-46. (In Ukrainian). PubMed, CrossRef
  9. Labyntseva RD, Bobrovska OM, Chunikhin OJu, Kosterin SO. Influence of heavy metal ions on the ATPase activity of actomyosin complex and myosin subfragment-1 from smooth muscle of the uterus. Ukr Biokhim Zhurn. 2011 Jul-Sep;83(4):84-93. (In Ukrainian). PubMed
  10. Suzuki H, Kondo Y, Carlos AD, Seidel JC. Effects of phosphorylation, MgATP, and ionic strength on the rates of papain degradation of heavy and light chains of smooth muscle heavy meromyosin at the S1-S2 junction. J Biol Chem. 1988 Aug 5;263(22):10974-9. PubMed
  11. Schägger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368-79. PubMed, CrossRef
  12. Chen PS, Toribara TY, Warner H. Microdetermination of phosphorus. Anal Chem. 1956; 28(11): 1756-8. CrossRef
  13. Rodik R, Boiko V, Danylyuk O, Suwińska K, Tsymbal I, Slinchenko N, Babich L, Shlykov S., Kosterin S., Lipkowski J., Kalchenko V. Calix[4]arenesulfonylamidines. Synthesis, structure and influence on Mg2+, ATP-dependent calcium pumps. Tetrahedron Letters. 2005 Oct; 46(43): 7459–7462.  CrossRef
  14. Cornish-Bowden A. Fundamentals of Enzyme Kinetics, 2004. Portland Press, London, 3rd edn. 422 pp.
  15. Kokunin VA. Statistical processing of data from a small number of experiments. Ukr Biokhim Zhurn. 1975 Nov-Dec;47(6):776-91. PubMed
  16. Cassidy CE, Setzer WN. Cancer-relevant biochemical targets of cytotoxic Lonchocarpus flavonoids: a molecular docking analysis. J Mol Model. 2010 Feb;16(2):311-26. PubMed, CrossRef
  17. Houdusse A, Kalabokis VN, Himmel D, Szent-Györgyi AG, Cohen C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell. 1999 May 14;97(4):459-70. PubMed
  18. Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG. Structural changes of envelope proteins during alphavirus fusion. Nature. 2010 Dec 2;468(7324):705-8. PubMed, PubMedCentral, CrossRef
  19. Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with YASARA NOVA–a self-parameterizing force field. Proteins. 2002 May 15;47(3):393-402. PubMed
  20. Himmel DM, Gourinath S, Reshetnikova L, Shen Y, Szent-Györgyi AG, Cohen C. Crystallographic findings on the internally uncoupled and near-rigor states of myosin: further insights into the mechanics of the motor. Proc Natl Acad Sci USA. 2002 Oct 1;99(20):12645-50. PubMed, PubMedCentral, CrossRef
  21. Minehardt TJ, Marzari N, Cooke R, Pate E, Kollman PA, Car R. A classical and ab initio study of the interaction of the myosin triphosphate binding domain with ATP. Biophys J. 2002 Feb;82(2):660-75. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.