Ukr.Biochem.J. 2016; Volume 88, Issue 5, Sep-Oct, pp. 62-70


Mycobacterium tuberculosis antigens MPT63 and MPT83 increase phagocytic activity of murine peritoneal macrophages

A. A. Siromolot1,2, O. S. Oliinyk2, D. V. Kolibo2,1, S. V. Komisarenko2

1Educational and Scientific Centre Institute of Biology,
Taras Shevchenko National University of Kyiv, Ukraine;
2Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;

Macrophages (MΦ) are the most described and characterized target and host of mycobacteria. Like other cells of innate immunity MΦ have a wide range of receptor molecules which interact with different pathogen associated molecular patterns (PAMPs). Immunodominant proteins MPT63 and MPT83 that are synthesized in abundance by Mycobacterium bovis or Mycobacterium tuberculosis strains could be involved in development of tuberculosis infection. The aim of this study was to search for effects of these mycobacterial antigens on target cells. For this aim full-sized sequences of MPT83 (rMPT83full) and MPT63 antigens were cloned into plasmid pET24a(+). The increase of phagocytic activity of murine peritoneal macrophages was demonstrated, but not of macrophage-like cells from J774 cell line, which were treated by rMPT63 and rMPT83full proteins for 24 h. This effect of such antigens can be considered as a way to facilitate the consumption of mycobacterial cells by macrophages to avoid other effector mechanisms of innate and adaptive immunity.

Keywords: , , , , ,


  1. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998 Jun 11;393(6685):537-44. PubMed, CrossRef
  2. Palomino JC. Tuberculosis: from basic science to patient care. Palomino J.C., Leao S.C., Rittaco V. Brazil publishing, 2007. 686 p.
  3. Russell DG. Who puts the tubercle in tuberculosis? Nat Rev Microbiol. 2007 Jan;5(1):39-47. Review. PubMed, CrossRef
  4. Nagai S, Wiker HG, Harboe M, Kinomoto M. Isolation and partial characterization of major protein antigens in the culture fluid of Mycobacterium tuberculosis. Infect Immun. 1991 Jan;59(1):372-82. PubMed, PubMedCentral
  5. Manca C, Lyashchenko K, Wiker HG, Usai D, Colangeli R, Gennaro ML. Molecular cloning, purification, and serological characterization of MPT63, a novel antigen secreted by Mycobacterium tuberculosis. Infect Immun. 1997 Jan;65(1):16-23. PubMed, PubMedCentral
  6. Redchuk TA, Oliinyk OS, Kaberniuk AA, Burkalova DO, Romaniuk SI,  Kolibo DV, Komisarenko SV. Cloning and expression of Mycobacterium bovis antigens MPB63 and MPB83 in Escherichia coli. Rep Nat Acad Sci Ukraine. 2007;9:161-166. (In Ukrainian).
  7. Redchuk TA, Korotkevich NV, Kaberniuk AA, Oliinyk OS, Labyntsev AIu, Romaniuk SI,  Kolibo DV, Busol VA, Komisarenko SV. Statistical analysis of the distribution of the antibody levels to Mycobacterium bovis antigenes for bovine tuberculosis diagnostics. Cytol Genet. 2010;44(5):280-285.  CrossRef
  8. Goulding CW, Parseghian A, Sawaya MR, Cascio D, Apostol MI, Gennaro ML, Eisenberg D. Crystal structure of a major secreted protein of Mycobacterium tuberculosis-MPT63 at 1.5-A resolution. Protein Sci. 2002 Dec;11(12):2887-93. PubMed, PubMedCentral, CrossRef
  9. Camus JC, Pryor MJ, Médigue C, Cole ST. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology. 2002 Oct;148(Pt 10):2967-73. PubMed, CrossRef
  10. Muñoz S, Hernández-Pando R, Abraham SN, Enciso JA. Mast cell activation by Mycobacterium tuberculosis: mediator release and role of CD48.  J Immunol. 2003 Jun 1;170(11):5590-6. PubMed, CrossRef
  11. Wiker HG. MPB70 and MPB83–major antigens of Mycobacterium bovis. Scand J Immunol. 2009 Jun;69(6):492-9. Review. PubMed, CrossRef
  12. Chambers MA, Whelan AO, Spallek R, Singh M, Coddeville B, Guerardel Y, Elass E. Non-acylated Mycobacterium bovis glycoprotein MPB83 binds to TLR1/2 and stimulates production of matrix metalloproteinase 9. Biochem Biophys Res Commun. 2010 Sep 24;400(3):403-8. PubMed, CrossRef
  13. Saraav I, Singh S, Sharma S. Outcome of Mycobacterium tuberculosis and Toll-like receptor interaction: immune response or immune evasion? Immunol Cell Biol. 2014 Oct;92(9):741-6. Review. PubMed, CrossRef
  14. Chen ST, Li JY, Zhang Y, Gao X, Cai H. Recombinant MPT83 derived from Mycobacterium tuberculosis induces cytokine production and upregulates the function of mouse macrophages through TLR2. J Immunol. 2012 Jan 15;188(2):668-77. PubMed, CrossRef
  15. Gille C, Spring B, Tewes L, Poets CF, Orlikowsky T. A new method to quantify phagocytosis and intracellular degradation using green fluorescent protein-labeled Escherichia coli: comparison of cord blood macrophages and peripheral blood macrophages of healthy adults. Cytometry A. 2006 Mar;69(3):152-4. PubMed, CrossRef
  16. Steinkamp JA, Wilson JS, Saunders GC, Stewart CC. Phagocytosis: flow cytometric quantitation with fluorescent microspheres. Science. 1982 Jan 1;215(4528):64-6. PubMed, CrossRef
  17. Stewart CC, Lehnert BE, Steinkamp JA. In vitro and in vivo measurement of phagocytosis by flow cytometry. Methods Enzymol. 1986;132:183-92. PubMed, CrossRef
  18. Lugini L, Lozupone F, Matarrese P, Funaro C, Luciani F, Malorni W, Rivoltini L, Castelli C, Tinari A, Piris A, Parmiani G, Fais S. Potent phagocytic activity discriminates metastatic and primary human malignant melanomas: a key role of ezrin. Lab Invest. 2003 Nov;83(11):1555-67. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.