Ukr.Biochem.J. 2019; Volume 91, Issue 1, Jan-Feb, pp. 86-91

doi: https://doi.org/10.15407/ubj91.01.086

Cellular fatty acid composition of Aeromonas genus – destructor of aromatic xenobiotics

T. V. Gudzenko, O. G. Gorshkova, N. V. Korotaieva,
O. V. Voliuvach, А. М. Ostapchuk, V. O. Іvanytsia

Оdesa I. I. Mechnikov National University, Ukraine;
e-mail: tgudzenko@ukr.net

Received: 17 September 2018; Accepted: 13 December 2018

The aim of this study was a determination of the fatty acid composition of cellular lipids and identification of the strains, isolated from the wastewater of pharmaceutical production, – the destructor of aromatic xenobiotics. The phenotypic characteristics and cellular fatty acid (FA) composition confirmed the strain belonging to the Aeromonas ichthiosmia with the similarity index of library data MIDI Sherlock – 0.564. Analysis of the cellular FA composition of the strain Aeromonas ichthiosmia ONU552 was carried out using the MIDI Sherlock microorganism identification system based on the gas chromatograph Agilent 7890. Chromatographic analysis showed that the fatty acid profile of the strain Aeromonas ichthiosmia ONU552 contains 26 fatty acids with the total number of carbon atoms from 10 to 18. 85.27% of saturated and unsaturated fatty acids had unbranched structure. The total content of unsaturated fatty acids – 16:1 w7c/16:1 w6c, 18:1 w7c, 16:1 w7c alcohol, 17:1 w8c, 17:1 w6c, 16:1 w5c, was 50% of the total fatty acid pool. Less than 1.5% branched fatty acids were predominantly in the iso form: 13:0 iso (0.20%); 15:0 iso (0.97%); 17:1 iso w9c (1.35%), 17:0 iso (1.49%); in the anteiso form, only one acid 17:0 (0.27%) was identified. It was shown that the characteris­tic of the fatty acid composition of the strain Aeromonas ichthiosmia ONU552 – the destructor of aromatic xenobio­tics, was the presence of hydroxyacids 12:0 3OH, 15:0 3OH, 15:0 iso 3OH and dominance of hexadecanoic (16:0) and hexadecenoic (16:1 w7c/16:1 w6c) of fatty acids.

Keywords: , ,


References:

  1. Talagrand-Reboul E, Jumas-Bilak E, Lamy B. The Social Life of Aeromonas through Biofilm and Quorum Sensing Systems. Front Microbiol. 2017 Jan 20;8:37. PubMed, PubMedCentral, CrossRef
  2. Ljungh A, Wadström T. Aeromonas toxins. Pharmacol Ther. 1981;15(3):339-354.  CrossRef
  3. Bergey’s Manual® of Systematic Bacteriology. Eds.: Brenner DJ, Krieg NR , Staley JT, Garrity GM. N.Y.: Springer, 2005; 2: 1108 p. CrossRef
  4. Romero A, Saraceni PR, Merino S, Figueras A, Tomás JM, Novoa B. The Animal Model Determines the Results of Aeromonas Virulence Factors. Front Microbiol. 2016 Oct 4;7:1574. PubMed, PubMedCentral, CrossRef
  5. Patrauchan MA, Oriel PJ. Degradation of benzyldimethylalkylammonium chloride by Aeromonas hydrophila sp. K. J Appl Microbiol. 2003;94(2):266-72. PubMed, CrossRef
  6. Kumar SS, Shantkriti S, Muruganandham T, Murugesh E, Rane N, Govindwar SP. Bioinformatics aided microbial approach for bioremediation of wastewater containing textile dyes. Ecol Inform. 2016; 31:112-121. CrossRef
  7. Pat. 2182529 RF, MPK 7B 09C 1/10 A, 7C 02F 3/34 B, 7C 12N 1/26 B. Сonsortium of microorganism-destructor strains: Bacillus spp, Aeromonas spp., Alcaligenes eutrophus, Alcaligenes denitrificans, used for cleaning soils, soils and waters from oil pollution / Golodjaev G. P. Publ. 2002.
  8. Nie M, Nie H, Cao W, Wang X, Guo Y, Tian  X, Yin  X, Wang Y. Phenanthrene Metabolites from a New Polycyclic Aromatic Hydrocarbon-Degrading Bacterium  Aeromonas  salmonicida subsp.  Achromogenes Strain NY4. Polycycl Aromat Compd. 2016; 36(2):132-151. CrossRef
  9. Kiyohara H, Nagao K, Nomi R. Degradation of phenanthrene through o-phthalate by an Aeromonas sp. Agric Biol Chem. 1976; 40(6):1075-1082.  CrossRef
  10. Application for unility model,  u201804337 UA, MPK S 02F1/72. Methods of microbiological purification of water from phenol and N-cetylpyridinium bromide / Ivanytsia V. O., Hudzenko T. V., Horshkova O. H., Voliuvach O. V., Konup I. P., Bieliaieva T. O., Drahunovska O. I.; appl. 20.04.2018
  11. MIS Operating Manual. www.midi-inc.com, September 2012.
  12. Gorshkova OG, Shtenikov MD, Korotaeva NV, Voliuvach OV. Features of fatty strength profile of strain Brevibacillus centrosporus F14 – destructor of phenolic compounds. Ukr Biochem J. 2018;90(3): 134.
  13. The role of microorganisms in the functioning of living systems: fundamental problems and bioengineering applications. Eds.: V. V. Vlasova, A. G. Degermendzhi, N. A. Kolchanova, V. N. Parmona, V. E. Repina. Novosibirsk: SO Russ Akad nauk, 2010; (28): 476 p.
  14. Heipieper HJ, Meulenbeld G, van Oirschot Q, de Bont J. Effect of Environmental Factors on the trans/cis Ratio of Unsaturated Fatty Acids in Pseudomonas putida S12. Appl Environ Microbiol. 1996 Aug;62(8):2773-7. PubMed, PubMedCentral
  15. Huys G, Vancanneyt M, Coopman R, Janssen P, Falsen E, Altwegg M, Kersters K. Cellular fatty acid composition as chemotaxonomic marker for the differentiation of phenospecies and hybridization groups in the genus Aeromonas. Int J Syst Bacteriol. 1994;44(4):651–658. CrossRef
  16. Morey A, Oliveira ACM, Himelbloom BH. Identification of Seafood Bacteria from Cellular Fatty Acid Analysis via the Sherlock® Microbial Identification System. J Biol Life Sci. 2013;4(2):139-153.  CrossRef
  17. Saha P, Chakrabarti T. Aeromonas sharmana sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol. 2006 Aug;56(Pt 8):1905-9. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.