Ukr.Biochem.J. 2019; Volume 91, Issue 3, May-Jun, pp. 5-18

doi: https://doi.org/10.15407/ubj91.03.005

Phenolic compounds in plants: biogenesis and functions

L. M. Babenko1, O. E. Smirnov2, K. O. Romanenko1,
O. K. Trunova3, I. V. Kosakіvskа1

1M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv;
2Educational and Scientific Center “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Ukraine;
3V.I. Vernadsky Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: lilia.babenko@gmail.com

Received: 05 November 2018; Accepted: 14 March 2019

Phenolic compounds (PCs) in plants play an important role in growth control and have antioxidant, structural, attractant, signaling and protective functions. Information on the discovery, study and identification of phenolic compounds in plants, their role in the complex system of secondary metabolites has been analyzed and summarized. The functions of PCs at the macromolecular, cellular as well as organism and population levels are described. The pathways of PCs formation, enzymes responsible for their synthesis and the plasticity of the synthesis in a plant cell are highlighted. The involvement of PCs in the plant breathing, photosynthesis, oxidation-reduction processes and regulation of the plants physiological state are discussed.

Keywords: , , , ,


References:

  1. Prusakova LD, Kefeli VI, Belopukhov SL, Vakulenko VV, Kuznetsova SA. Role of Phenol Compounds in Plants. Agrohimiya. 2008; 7: 86-96. (In Russian).
  2. Zaprometov M.N. Phenolic compounds and their role in the life of a plant: 56th Timiryazev reading. M.: Nauka, 1996. 45 p. (In Russian).
  3. Khlestkina EK. The adaptive role of flavonoids: emphasis on cereals. Cereal Res Commun. 2013;41(2):185-198. CrossRef
  4. Zaprometov MN, Nikolaeva TN. Chloroplasts Isolated from Kidney Bean Leaves Are Capable of Phenolic Compound Biosynthesis. Russ J Plant Physiol. 2003;50(5):623-626. CrossRef
  5. Zolotareva OK, Podorvanov VV, Dubyna DV. Polyphenolic compounds of macrophytes and their ecological importance. Ukr Bot J. 2017; 74(4): 373–384. (In Ukrainian). CrossRef
  6. Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006; 99(1): 191-203.  CrossRef
  7. Kovaleva LV, Zakharova EV, Minkina YuV.  Auxin and flavonoids in the progame phase of fertilization in petunia. Russ J Plant Physiol. 2007;54(3):396-401.  CrossRef
  8. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure. Plant Physiol. 2010 Jul;153(3):895-905.  PubMed, PubMedCentral, CrossRef
  9. Amthor JS. Efficiency of lignin biosynthesis: a quantitative analysis. Ann Bot. 2003 May;91(6):673-95. PubMed, PubMedCentral, CrossRef
  10. Crozier A., Jaganath I.B., Clifford M.N. Phenols, polyphenols and tannins: An overview / Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet; Crozier A., Clifford M., Ashihara H. Eds. Blackwell: Oxford, UK, 2008: 1-24. CrossRef
  11. Hartmann T. From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry. 2007 Nov-Dec;68(22-24):2831-46. PubMed, CrossRef
  12. Koukol J, Conn EE. The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J Biol Chem. 1961 Oct;236:2692-8. PubMed
  13. Sachs, J. Handbuch der experimental-physiologie der pflanzen. Wilhelm Engelmann, Leipzig, Germany, 1865. 514 p.
  14. Knaggs AR. The biosynthesis of shikimate metabolites. Nat Prod Rep. 2003 Feb;20(1):119-36. PubMed, CrossRef
  15. Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol. 2002 Jun;5(3):218-23. PubMed, CrossRef
  16. Hahlbrock K, Scheel D. Physiology and molecular biology of phenylpropanoid metabolism. Ann Rev Plant Physiol Plant Mol Biol. 1989;40(1):347–369. CrossRef
  17. Blount JW, Korth KL, Masoud SA, Rasmussen S, Lamb C, Dixon RA. Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol. 2000 Jan;122(1):107-16. PubMed, PubMedCentral, CrossRef
  18. Allwood EG, Davies DR, Gerrish C, Ellis BE, Bolwell GP. Phosphorylation of phenylalanine ammonia-lyase: evidence for a novel protein kinase and identification of the phosphorylated residue. FEBS Lett. 1999 Aug 20;457(1):47-52. PubMed, CrossRef
  19. Cheng SH, Sheen J, Gerrish C, Bolwell GP. Molecular identification of phenylalanine ammonia-lyase as a substrate of a specific constitutively active Arabidopsis CDPK expressed in maize protoplasts. FEBS Lett. 2001 Aug 17;503(2-3):185-8. PubMed, CrossRef
  20. Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science. 1998 Dec 18;282(5397):2226-30. PubMed, CrossRef
  21. Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010 Oct 21;15(10):7313-52. PubMed, PubMedCentral, CrossRef
  22. Gómez-García Mdel R, Ochoa-Alejo N. Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.). Int J Mol Sci. 2013 Sep 16;14(9):19025-53. PubMed, PubMedCentral, CrossRef
  23. Palladin W. Das Blut der Pflanzen. Berichte der Deutschen Botanischen Gesellschaft. 1908; 26a: 125-132.
  24. Ravanel P, Tissut M, Douce R. Uncoupling activities of chalcones and dihydrochalcones on isolated mitochondria from potato tubers and mung bean hypocotyls. Phytochemistry. 1982;21(12):2845-2850.  CrossRef
  25. Zhao HJ, Zou Q. Protective effects of exogenous antioxidants and phenolic compounds on photosynthesis of wheat leaves under high irradiance and oxidative stress. Photosynthetica. 2002; 40(4): 523-527. CrossRef
  26. Ylstra B, Touraev A, Moreno RM, Stöger E, van Tunen AJ, Vicente O, Mol JN, Heberle-Bors E. Flavonols stimulate development, germination, and tube growth of tobacco pollen. Plant Physiol. 1992 Oct;100(2):902-7. PubMed, PubMedCentral, CrossRef
  27. van der Meer IM, Stam ME, van Tunen AJ, Mol JN, Stuitje AR. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell. 1992 Mar;4(3):253-62. PubMed, PubMedCentral, CrossRef
  28. Mo Y, Nagel C, Taylor LP. Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA. 1992 Aug 1;89(15):7213-7. PubMed, PubMedCentral, CrossRef
  29. Pollak PE, Vogt T, Mo Y, Taylor LP. Chalcone Synthase and Flavonol Accumulation in Stigmas and Anthers of Petunia hybrida. Plant Physiol. 1993 Jul;102(3):925-932. PubMed, PubMedCentral, CrossRef
  30. Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519-46. PubMed, CrossRef
  31. Rivero RM, Ruiz JM, García PC, López-Lefebre LR, Sánchez E, Romero L. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 2001 Jan 5;160(2):315-321. PubMed, CrossRef
  32. Król A, Amarowicz R, Weidner S. The effects of cold stress on the phenolic compounds and antioxidant capacity of grapevine (Vitis vinifera L.) leaves. J Plant Physiol. 2015 Sep 15;189:97-104. PubMed, CrossRef
  33. Amarowicz R, Weidner S, Wójtowicz I, Karmać M, Kosińska A, Rybarczyk A. Influence of low-temperature stress on changes in the composition of grapevine leaf phenolic compounds and their antioxidant properties. Funct Plant Sci Biotechnol. 2010; 4: 90–96.
  34. Weidner S, Karolak M, Karamać M., Amarowicz R. Phenolic compounds and properties of antioxidants in grapevine roots (Vitis vinifera) under drought stress followed by recovery. Acta Soc Bot Pol. 2009;78(2):97–103. CrossRef
  35. Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MS, Wang L. The phenylpropanoid pathway and plant defence-a genomics perspective. Mol Plant Pathol. 2002 Sep 1;3(5):371-90.  PubMed, CrossRef
  36. Swigonska S, Amarowicz R, Król A, Mostek A, Badowiec A, Weidner S. Influence of abiotic stress during soybean germination followed by recovery on the phenolic compounds of radicles and their antioxidant capacity. Acta Soc Bot Pol. 2014; 83(3): 209–218.  CrossRef
  37. Rudikovskaya EG, Fedorova GA, Dudareva LV, Makarova LE, Rudokovskii AV. Effect of growth temperature on the composition of phenols in pea roots. Russ J Plant Physiol. 2008;55(5): 712–715.  CrossRef
  38. Posmyk MM, Bailly C, Szafrańska K, Janas KM, Corbineau F. Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedlings. J Plant Physiol. 2005 Apr;162(4):403-12. PubMed, CrossRef
  39. Olenichenko NA, Zagoskina NV, Astakhova NV, Trunova TI, Kuznetsov YuV. Primary and secondary metabolism of winter wheat under cold hardening and treatment with antioxidants. Appl Biochem Microbiol. 2008 Sep-Oct;44(5):589-94. (In Russian). PubMed, CrossRef
  40. Shichijo C, Hamada T, Hiraoka M, Johnson CB, Hashimoto T. Enhancement of red-light-induced anthocyanin synthesis in sorghum first internodes by moderate low temperature given in the pre-irradiation culture period. Planta. 1993; 191(2): 238–245.  CrossRef
  41. Christie PJ, Alfenito MR, Walbot V. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta. 1994;194(4):541–549.  CrossRef
  42. Gould KS, Lister C. Flavonoid functions in plants / Flavonoids: chemistry, biochemistry and applications. Eds. O.M. Andersen, K.R. Markham. Taylor & Francis Group, LLC. 2006: 397-442. CrossRef
  43. Pauliuchkova SM, Spivak EA, Vershilovskaya I.V. Nedved E.L. The effect of exogenous 5-aminolevulinic acid on the operation of antioxidant system in potato plants (Solanum tuberosum) under low temperature stress. Proc Nat Acad Sci Belarus. Biol Ser.  2014; 3: 46-51. (In Russian).
  44. Olenichenko NA, Zagoskina NV, Astakhova NV, Trunova TI, Kuznetsov YuV. Primary and secondary metabolism of winter wheat under cold hardening and treatment with antioxidants. Appl Biochem Microbiol. 2008; 44(5): 535-540. CrossRef
  45. Abramchik LM, Serdyuchenko EV, Makarov VN, Zenevich LA, Zhavoronkova NB, Kabashnikova LF. Varietal specific features of the reaction of the spring hexaploid triticale on thermal stress.  Proc Nat Acad Sci Belarus. Biol Ser. 2014; 4: 43-49. (In Russian).
  46. Kabashnikova LF, Abramchik LM, Serdyuchen¬ko EV, Kapylova LV. There action of barley seedlings (Hordeum vulgare) with the combined effect of hyperthermia and dehydration. Proc Nat Acad Sci Belarus. Biol Ser. 2013; 3: 60–65. (In Russian).
  47. Chalker-Scott L. Environmental significance of anthocyanin in plant stress responses. Photochem Photobiol. 1999;70(1):1–9.  CrossRef
  48. Gould KS, Markham KR, Smith RH, Goris JJ. Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. J Exp Bot. 2000 Jun;51(347):1107-15. PubMed, CrossRef
  49. Harvaux M, Kloppstech K. The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta. 2001 Oct;213(6):953-66. PubMed, CrossRef
  50. Kolupaev YuE, Yastreb TO, Oboznyi AI, Ryabchun NI, Kirichenko VV. Constitutive and cold-induced resistance of rye and wheat seedlings to oxidative stress. Russ J Plant Physiol. 2016;63(3):326–337.  CrossRef
  51. Lachman J., Dudjak J., Miholova D., Kolihovas D., Pivec V.Effect of cadmium on flavonoid content in young barley (Hordeum sativum L.) plants. Plant Soil Environ. 2005; 51(11): 513–516.  CrossRef
  52. Schmidt S, Zietz M, Schreiner M, Rohn S, Kroh LW, Krumbein A. Genotypic and climatic influences on the concentration and composition of flavonoids in kale (Brassica oleracea var. sabellica). Food Chem. 2010; 119(4): 1293–1299.  CrossRef
  53. Treutter D. Significance of flavonoids in plant resistance: a review. Environ Chem Lett. 2006; 4(3): 147–157.  CrossRef
  54. Babenko LM, Vodka MV, Akimov YuN, Smirnov AE, Babenko AV, Kosakovskaya I Specific features of the ultrastructure and biochemical composition of leaf mesophill cells of Triticum spelta L. in the initial period of stress temperature action. Cell Tissue Biol. 2019;  13(1): 70-78.  CrossRef
  55. Kolupaev YuE,  Horielova EI, Yastreb TO, Popov  YuV,  Ryabchun NI. Phenylalanine ammonia-lyase activity and content of flavonoid compounds in wheat seedlings at the action of hypothermia and hydrogen sulfide donor. Ukr Biochem J. 2018; 90(6): 12-20.  CrossRef
  56. Hectors K, van Oevelen S, Guisez Y, Prinsen E, Jansen MA. The phytohormone auxin is a component of the regulatory system that controls UV-mediated accumulation of flavonoids and UV-induced morphogenesis. Physiol Plant. 2012 Aug;145(4):594-603. PubMed, CrossRef
  57. Murphy TM, Hamilton CM. A Strain of Rosa damascena cultured cells resistant to ultraviolet light. Plant Physiol. 1979 Dec;64(6):936-41. PubMed, PubMedCentral, CrossRef
  58. Kondo N, Kawashima M. Enhancement of the tolerance to oxidative stress in cucumber (Cucumis sativus L.) seedlings by UV-B irradiation: possible involvement of phenolic compounds and antioxidative enzymes. J Plant Res. 2000;113(3):311–317. CrossRef
  59. Ou S, Lu S, Yang S. Effects of enhanced UV-B radiation on the content of flаvonoids in mesophyll cells of wheat. Imaging Radiat Res. 2018; 1(1): 1–9.  CrossRef
  60. Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot. 2003 Jan;91 Spec No:179-94.
    PubMed, PubMedCentral, CrossRef
  61. Radyukina NL, Toaima VIM, Zaripova NR. The involvement of low-molecular antioxidants in cross-adaptation of medicine plants to successive action of UV-B radiation and salinity. Russ J Plant Physiol. 2012; 59(1): 71–78. CrossRef
  62. Punyasiri PA, Abeysinghe SB, Kumar V. Preformed and induced chemical resistance of tea leaf against Exobasidium vexans infection. J Chem Ecol. 2005 Jun;31(6):1315-24. PubMed, CrossRef
  63. Yao K, De Luca V, Brisson N. Creation of a Metabolic Sink for Tryptophan Alters the Phenylpropanoid Pathway and the Susceptibility of Potato to Phytophthora infestans. Plant Cell. 1995 Nov;7(11):1787-1799. PubMed, PubMedCentral, CrossRef
  64. Beckman CH. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defense responses in plants? Physiol Mol Plant Pathol. 2000;57(3):101-110.  CrossRef
  65. Lozovaya VV, Lygin AV, Zernova OV, Li S, Hartman GL, Widholm JM. Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol Biochem. 2004 Jul-Aug;42(7-8):671-9. PubMed, CrossRef
  66. Dmitriev AP. Phytoalexins and their role in plant resistance. Nat Acad Sci Ukraine, Institute of Cell Biology and Genetic Engineering. Kyiv: Naukova Dumka, 1999. 207 p. (In Russian).
  67. Gao YN, Liu BY, Xu D, Zhou QH, Hu CY, Ge FJ, Zhang LP, Wu ZB. Phenolic Compounds Exuded from Two Submerged Freshwater Macrophytes and Their Allelopathic Effects on Microcystis aeruginosa. Pol J Environ Stud. 2011;20(5):1153-1159.
  68. Volynets AP. Phenolic compounds in plant life. Mynsk: Belarus. navuka, 2013. 285 p. (In Russian).
  69. Matsumura E, Matsuda M. Sato F, Minami H. Microbial production of plant benzylisoquinoline alkaloids /Natural Products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Ramawat K., Mérillon JM. (Eds.). Springer, Berlin, Heidelberg, 2013: 3-24. CrossRef
  70. Cooper-Driver GA, Bhattacharya M. Role of phenolics in plant evolution. Phytochemistry. 1998;49(5):1165-1174.
  71. Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry. 2000 Nov;55(6):481-504. PubMed, CrossRef
  72. Wollenweber E, Stevens JF, Dörr M, Rozefelds AC. Taxonomic significance of flavonoid variation in temperate species of Nothofagus. Phytochemistry. 2003 Apr;62(7):1125-31. PubMed, CrossRef
  73. Erhard D, Gross E. Do environmental factors influence composition of potential allelochemicals in the submersed freshwater macrophyte Elodea nuttallii (Hydrocharitaceae)? Verh Internat Verein Limnol. 2005;29(1):287–291.  CrossRef
  74. Gross EM, Feldbaum C, Graf A. Epiphyte biomass and elemental composition on submersed macrophytes in shallow eutrophic lakes. Hydrobiologia. 2003;506(1–3):559–565. CrossRef
  75. Schoenaers S, Balcerowicz D, Breen G, Hill K, Zdanio M, Mouille G, Holman TJ, Oh J, Wilson MH, Nikonorova N, Vu LD, De Smet I, Swarup R, De Vos WH, Pintelon I, Adriaensen D, Grierson C, Bennett MJ, Vissenberg K. The Auxin-Regulated CrRLK1L Kinase ERULUS Controls Cell Wall Composition during Root Hair Tip Growth. Curr Biol. 2018 Mar 5;28(5):722-732.e6.  PubMed, CrossRef
  76. Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK. Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis. Plant Physiol. 2001 Jun;126(2):524-35. PubMed, PubMedCentral, cr id=”https://doi.org/10.1104/pp.126.2.524″]
  77. Peer WA, Murphy AS. Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci. 2007 Dec;12(12):556-63.  PubMed, CrossRef
  78. Santelia D, Henrichs S, Vincenzetti V, Sauer M, Bigler L, Klein M, Bailly A, Lee Y, Friml J, Geisler M, Martinoia E. Flavonoids redirect PIN-mediated polar auxin fluxes during root gravitropic responses. J Biol Chem. 2008 Nov 7;283(45):31218-26.  PubMed, PubMedCentral, CrossRef
  79. Ng JL, Hassan S, Truong TT, Hocart CH, Laffont C, Frugier F, Mathesius U. Flavonoids and auxin transport inhibitors rescue symbiotic nodulation in the Medicago truncatula cytokinin rerception mutant cre1. Plant Cell. 2015 Aug;27(8):2210-26.   PubMed, PubMedCentral, CrossRef
  80. Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell. 2007 Jan;19(1):148-62.  PubMed, PubMedCentral, CrossRef
  81. Yang T, Chen Y, Wang X-X, Dai C-C.  Plant symbionts: keys to the phytosphere. Symbiosis. 2013; 59(1): 1-14.   CrossRef
  82. Whipps JM. Microbial interactions and biocontrol in the rhizosphere. J Exp Bot. 2001 Mar;52(Spec Issue):487-511. PubMed, CrossRef
  83. Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM. How plants communicate using the underground information superhighway. Trends Plant Sci. 2004 Jan;9(1):26-32. PubMed, CrossRef
  84. Dakora FD, Phillips DA. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil. 2002; 245(1): 35–47. CrossRef
  85. Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol. 2010 Sep;11(5):705-19. PubMed, CrossRef
  86. Hartley RD, Harris PJ. Phenolic constituents of the cell walls of dicotyledons. Biochem Syst Ecol. 1981;9(2-3):189-203.  CrossRef
  87. Blum U, Staman KL, Flint LJ, Steven R. Induction and/or selection of fenolic acid utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J Chem Ecol. 2000;26(9):2059–2078. CrossRef
  88. Hättenschwiler S, Vitousek PM. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol. 2000 Jun;15(6):238-243. PubMed, CrossRef
  89. Taylor LP, Grotewold E. Flavonoids as developmental regulators. Curr Opin Plant Biol. 2005 Jun;8(3):317-23. PubMed, CrossRef
  90. Hassan S, Mathesius U. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot. 2012 May;63(9):3429-44. PubMed, CrossRef
  91. Halvorson JJ, Gonzalez JM, Hagerman AE, Smith JL. Sorption of tannin and related phenolic compounds and effects on soluble-N in soil. Soil Biol Biochem. 2009; 41(9):2002–2010.  CrossRef
  92. Kefeli VI, Kalevitch MV, Borsari B. Phenolic cycle in plants and environment. J Cell Mol Biol. 2003;2(1):13–18.
  93. Mandal SM, Chakraborty D, Dey S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav. 2010 Apr;5(4):359-68.
    PubMed, PubMedCentral, CrossRef
  94. Mierziak J, Kostyn K, Kulma A. Flavonoids as important molecules of plant interactions with the environment. Molecules. 2014 Oct 10;19(10):16240-65.
    PubMed, PubMedCentral, CrossRef
  95. Staman K, Blum U, Louws F, Robertson D. Can simultaneous inhibition of seedling growth and stimulation of rhizosphere bacterial populations provide evidence for phytotoxin transfer from plant residues in the bulk soil to the rhizosphere of sensitive species? J Chem Ecol. 2001 Apr;27(4):807-29. PubMed, CrossRef
  96. Hartwig UA, Joseph CM, Phillips DA. Flavonoids released naturally from Alfalfa seeds enhance growth rate of Rhizobium meliloti. Plant Physiol. 1991 Mar;95(3):797-803. PubMed, PubMedCentral, CrossRef
  97. Kobayashi H, Naciri-Graven Y, Broughton WJ, Perret X. Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol Microbiol. 2004 Jan;51(2):335-47. PubMed, CrossRef
  98. Janczarek M, Rachwał K, Marzec A, Grządziel J, Palusinska-Szysz M. Signal molecules and cell-surface components involved in early stages of the legume–rhizobium interactions. Appl Soil Ecol. 2014; 85: 94–113.  CrossRef
  99. Fox JE, Starcevic M, Kow KY, Burow ME, McLachlan JA. Nitrogen fixation. Endocrine disrupters and flavonoid signalling. Nature. 2001 Sep 13;413(6852):128-9. PubMed, CrossRef
  100. Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H. Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules. 2007 Jul 5;12(7):1290-306. PubMed, PubMedCentral, CrossRef
  101. Ponce MA, Scervino JM, Erra-Balsells R, Ocampo JA, Godeas AM. Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry. 2004 Jul;65(13):1925-30. PubMed, CrossRef
  102. Akiyama K, Matsuoka H, Hayashi H. Isolation and Identification of a Phosphate Deficiency-Induced C-Glycosylflavonoid That Stimulates Arbuscular Mycorrhiza Formation in Melon Roots. Mol Plant Microbe Interact. 2002;15(4):334–340. CrossRef
  103. Schliemann W, Ammer C, Strack D. Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry. 2008 Jan;69(1):112-46. PubMed, CrossRef
  104. Harrison MJ, Dixon RA. Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant Microbe Interact. 1993; 6(5): 643–654.  CrossRef
  105. Harrison MJ, Dixon RA. Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J. 1994; 6(1): 9–20. CrossRef
  106. Lagrange H, Jay-Allemand C, Lapeyrie F. Rutin, the phenolglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentrations. New Phytol. 2001; 149(2): 349–355.  CrossRef
  107. Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A. Arbuscular mycorrhizal colonization of tomato by Gigaspora and Ш species in the presence of root flavonoids. J Plant Physiol. 2005 Jun;162(6):625-33. PubMed, CrossRef
  108. Jacobo-Velázquez DA, Cisneros-Zevallos L. Recent Advances in Plant Phenolics. Molecules. 2017;22(8):1249. CrossRef
  109. Cartea ME, Francisco M, Soengas P, Velasco P. Phenolic compounds in brassica vegetables. Molecules. 2011; 16(1): 251–280. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.