Ukr.Biochem.J. 2019; Volume 91, Issue 6, Nov-Dec, pp. 5-14


Dependence of the mitochondrial adaptive capacity of hepatocytes on the oxidative substrates availability

H. M. Mazur, V. M. Merlavsky, B. O. Manko, V. V. Manko

Ivan Franko National University of Lviv, Ukraine;

Received: 11 February 2019; Accepted: 18 October 2019

The ability of the mitochondria to compensate for energy expenditure of cells largely depends on the availability of the oxidative substrates, transported across the intact plasma membrane with molecular carriers of limited affinity. The aim of this study was to investigate the dependence of adaptive respiratory responses of mitochondria of intact hepatocytes on the oxidative substrates. Basal and FCCP-stimulated respiration rates were determined with Clark electrode. After 15-minute incubation in the medium with the oxidative substrates or their combinations (glutamine, pyruvate, succinate, monomethyl succinate, α-ketoglutarate, dimethyl-α-ketoglutarate (2 mM) or glucose (10 mM)), isolated hepatocytes were added into the respiratory chamber. FCCP concentration was 0.25, 0.5 and 1 μM. The adaptive capacity of mitochondria was characterized by the maximal uncoupled respiration rate (the highest respiration rate among all tested FCCP concentrations), the optimal FCCP concentration (the concentration at which the maximal rate is achieved) and the area under the curve (AUC) of the dependence of the uncoupled respiration rate on FCCP concentration. The adaptive capacity of mitochondria, evaluated by AUC, increases in this order of substrates: glucose (0.063 r.u.), endogenous substrates (0.067 r.u.), glutamine (0.092 r.u.), pyruvate (0.113 r.u.), α-ketoglutarate (0.113 r.u.), succinate (0.152 r.u.), dimethyl-α -ketoglutarate (0.156 r.u.), and monomethyl succinate (0.172 r.u.). The adaptive capacity of mitochondria of hepatocytes seems to be partly dependent on plasma membrane transporters affinities (Km) to the oxidative substrates. The presence of glucose in the medium does not improve the adaptive capacity of hepatic mitochondria.

Keywords: , , ,


  1. Yadava N, Nicholls DG. Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone. J Neurosci. 2007 Jul 4;27(27):7310-7. PubMed, CrossRef
  2. Nicholls DG. Oxidative stress and energy crises in neuronal dysfunction. Ann N Y Acad Sci. 2008 Dec;1147:53-60. PubMed, CrossRef
  3. Sansbury BE, Jones SP, Riggs DW, Darley-Usmar VM, Hill BG. Bioenergetic function in cardiovascular cells: the importance of the reserve capacity and its biological regulation. Chem Biol Interact. 2011 May 30;191(1-3):288-95. PubMed, PubMedCentral, CrossRef
  4. Hill BG, Higdon AN, Dranka BP, Darley-Usmar VM. Regulation of vascular smooth muscle cell bioenergetic function by protein glutathiolation. Biochim Biophys Acta. 2010 Feb;1797(2):285-95. PubMed, PubMedCentral, CrossRef
  5. Lee WS, Sokol RJ. Liver disease in mitochondrial disorders. Semin Liver Dis. 2007 Aug;27(3):259-73. PubMed, PubMedCentral, CrossRef
  6. Simões ICM, Fontes A, Pinton P, Zischka H, Wieckowski MR. Mitochondria in non-alcoholic fatty liver disease. Int J Biochem Cell Biol. 2018 Feb;95:93-99. PubMed, CrossRef
  7. Abdelmalek MF, Lazo M, Horska A, Bonekamp S, Lipkin EW, Balasubramanyam A, Bantle JP, Johnson RJ, Diehl AM, Clark JM. Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. Hepatology. 2012 Sep;56(3):952-60. PubMed, PubMedCentral, CrossRef
  8. Karim S, Adams DH, Lalor PF. Hepatic expression and cellular distribution of the glucose transporter family. World J Gastroenterol. 2012 Dec 14;18(46):6771-81.  PubMed, PubMedCentral, CrossRef
  9. Poole RC, Halestrap AP. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol. 1993 Apr;264(4 Pt 1):C761-82. PubMed, CrossRef
  10. Fafournoux P, Demigné C, Rémésy C, Le Cam A. Bidirectional transport of glutamine across the cell membrane in rat liver. Biochem J. 1983 Nov 15;216(2):401-8. PubMed, PubMedCentral, CrossRef
  11. Zimmerli B, O’Neill B, Meier PJ. Identification of sodium-dependent and sodium-independent dicarboxylate transport systems in rat liver basolateral membrane vesicles. Pflugers Arch. 1992 Jul;421(4):329-35. PubMed, CrossRef
  12. Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29-83. PubMed, CrossRef
  13. Shinoda Y, Suzuki T, Sugawara-Yokoo M, Nagamatsu S, Kuwano H, Takata K. Expression of sugar transporters by in vivo electroporation and particle gun methods in the rat liver: localization to specific membrane domains. Acta Histochem Cytochem. 2001;34(1):15–24.  CrossRef
  14. Asano T, Katagiri H, Tsukuda K, Lin JL, Ishihara H, Yazaki Y, Oka Y. Upregulation of GLUT2 mRNA by glucose, mannose, and fructose in isolated rat hepatocytes. Diabetes. 1992 Jan;41(1):22-5. PubMed, CrossRef
  15. Rencurel F, Waeber G, Antoine B, Rocchiccioli F, Maulard P, Girard J, Leturque A. Requirement of glucose metabolism for regulation of glucose transporter type 2 (GLUT2) gene expression in liver. Biochem J. 1996 Mar 15;314(Pt 3):903-9. PubMed, PubMedCentral, CrossRef
  16. Uldry M, Ibberson M, Hosokawa M, Thorens B. GLUT2 is a high affinity glucosamine transporter. FEBS Lett. 2002 Jul 31;524(1-3):199-203. PubMed, CrossRef
  17. McCommis KS, Finck BN. Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem J. 2015 Mar 15;466(3):443-54. PubMed, PubMed, CrossRef
  18. Rui L. Energy metabolism in the liver. Compr Physiol. 2014 Jan;4(1):177-97. PubMed, PubMedCentral, CrossRef
  19. Bonen A, Heynen M, Hatta H. Distribution of monocarboxylate transporters MCT1-MCT8 in rat tissues and human skeletal muscle. Appl Physiol Nutr Metab. 2006 Feb;31(1):31-9. PubMed, CrossRef
  20. Baird FE, Beattie KJ, Hyde AR, Ganapathy V, Rennie MJ, Taylor PM. Bidirectional substrate fluxes through the system N (SNAT5) glutamine transporter may determine net glutamine flux in rat liver. J Physiol. 2004 Sep 1;559(Pt 2):367-81. PubMed, PubMedCentral, CrossRef
  21. Bhutia YD, Ganapathy V. Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta. 2016 Oct;1863(10):2531-9. PubMed, PubMedCentral, CrossRef
  22. Moseley RH, Jarose S, Permoad P. Hepatic Na(+)-dicarboxylate cotransport: identification, characterization, and acinar localization. Am J Physiol. 1992 Dec;263(6 Pt 1):G871-9. PubMed, CrossRef
  23. Stoll B, Hüssinger D. Functional hepatocyte heterogeneity. Vascular 2-oxoglutarate is almost exclusively taken up by perivenous, glutamine-synthetase-containing hepatocytes. Eur J Biochem. 1989 May 15;181(3):709-16. PubMed, CrossRef
  24. Stoll B, McNelly S, Buscher HP, Häussinger D. Functional hepatocyte heterogeneity in glutamate, aspartate and α-ketoglutarate uptake: a histoautoradiographical study. Hepatology. 1991;13(2):247-253.   CrossRef
  25. Chen X, Tsukaguchi H, Chen XZ, Berger UV, Hediger MA. Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter. J Clin Invest. 1999 Apr;103(8):1159-68. PubMed, PubMedCentral, CrossRef
  26. Rognstad R. Gluconeogenesis in rat hepatocytes from monomethyl succinate and other esters. Arch Biochem Biophys. 1984 May 1;230(2):605-9.
    PubMed, CrossRef
  27. Edlund GL, Halestrap AP. The kinetics of transport of lactate and pyruvate into rat hepatocytes. Evidence for the presence of a specific carrier similar to that in erythrocytes. Biochem J. 1988 Jan 1;249(1):117-26. PubMed, PubMedCentral, CrossRef
  28. Jackson VN, Halestrap AP. The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein. J Biol Chem. 1996 Jan 12;271(2):861-8. PubMed, CrossRef
  29. Thorens B, Cheng ZQ, Brown D, Lodish HF. Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney cells. Am J Physiol. 1990 Dec;259(6 Pt 1):C279-85. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.