Ukr.Biochem.J. 2019; Volume 91, Issue 6, Nov-Dec, pp. 86-95


Effect of selenium and nano-selenium on cisplatin-induced nephrotoxicity in albino rats

M. M. A. Shafaee1, H. S. Mohamed2, S. A. Ahmed1, M. A. Kandeil3

1Chemistry department, Faculty of Science, Beni-Suef University, Egypt;
2Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Egypt;
3Biochemistry department, Faculty of Veterinary medicine, Beni-Suef University, Egypt;

Received: 05 July 2019; Accepted: 18 October 2019

Cisplatin is commonly used as a chemotherapeutic agent useful in the treatment of several forms of cancer, but its use is limited due to the undesirable side effects of nephrotoxicity. Most of the previous researches found a positive effect of using selenium as an antioxidant on the toxicity of cisplatin during short term administrations  although the recommended dose regimen of cisplatin in chemotherapy is multiple successive administration every three or four weeks depending on the type of the tumor. The aim of this study was to examine the effects of long term usage of selenium or nano-selenium on cisplatin-induced nephrotoxicity in albino rats. Forty rats were divided into equal four groups, 1st group as a control injected with normal saline, 2nd group injected with cisplatin 6 mg/kg every 21 days for 70 days (experimental period), 3rd group injected with cisplatin 6 mg/kg plus intramuscular injection 0.1 mg/kg selenium in the form of sodium selenite every 3 days during the experimental period, the 4th group injected with cisplatin 6 mg/kg plus intramuscular injection 0.1 mg/kg nano-selenium every 3 days during the experimental period. The results indicated that selenium or nano-selenium exerted an antioxidant effect through increasing the level of antioxidant enzymes in both serum and kidney tissue, while, it shows a negative effect on kidney function through increasing serum urea and creatinine concentrations and causing abnormal morphology of kidney tissue for rats treated with cisplatin during experimental period.

Keywords: , , ,


  1. Posner MR, Hershock DM, Blajman CR, Mickiewicz E, Winquist E, Gorbounova V, Tjulandin S, Shin DM, Cullen K, Ervin TJ, Murphy BA, Raez LE, Cohen RB, Spaulding M, Tishler RB, Roth B, Viroglio Rdel C, Venkatesan V, Romanov I, Agarwala S, Harter KW, Dugan M, Cmelak A, Markoe AM, Read PW, Steinbrenner L, Colevas AD, Norris CM Jr, Haddad RI. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl J Med. 2007 Oct 25;357(17):1705-15. PubMed, CrossRef
  2. Vermorken JB, Remenar E, van Herpen C, Gorlia T, Mesia R, Degardin M, Stewart JS, Jelic S, Betka J, Preiss JH, van den Weyngaert D, Awada A, Cupissol D, Kienzer HR, Rey A, Desaunois I, Bernier J, Lefebvre JL. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N Engl J Med. 2007 Oct 25;357(17):1695-704. PubMed, CrossRef
  3. Feldman DR, Ardeshir-Rouhani-Fard S, Monahan P, Sesso HD, Fung C, Williams AM, Hamilton RJ, Vaughn DJ, Beard CJ, Cook R, Zaid MA, Lipshultz SE, Einhorn LH, Oeffinger KC, Travis LB, Fossa SD. Predicting Cardiovascular Disease Among Testicular Cancer Survivors After Modern Cisplatin-based Chemotherapy: Application of the Framingham Risk Score. Clin Genitourin Cancer. 2018 Aug;16(4):e761-e769.  PubMed, PubMedCentral, CrossRef
  4. Selfe J, Goddard NC, McIntyre A, Taylor KR, Renshaw J, Popov SD, Thway K, Summersgill B, Huddart RA, Gilbert DC, Shipley JM. IGF1R signalling in testicular germ cell tumour cells impacts on cell survival and acquired cisplatin resistance. J Pathol. 2018 Feb;244(2):242-253. PubMed, PubMedCentral, CrossRef
  5. Samuel P, Pink RC, Brooks SA, Carter DR. miRNAs and ovarian cancer: a miRiad of mechanisms to induce cisplatin drug resistance. Expert Rev Anticancer Ther. 2016;16(1):57-70. PubMed, CrossRef
  6. Samuel P, Mulcahy LA, Furlong F, McCarthy HO, Brooks SA, Fabbri M, Pink RC, Carter DRF. Cisplatin induces the release of extracellular vesicles from ovarian cancer cells that can induce invasiveness and drug resistance in bystander cells. Philos Trans R Soc Lond B Biol Sci. 2018 Jan 5;373(1737): 20170065. PubMed, PubMedCentral, CrossRef
  7. Li Q, Damish AW, Frazier Z, Liu D, Reznichenko E, Kamburov A, Bell A, Zhao H, Jordan EJ, Gao SP, Ma J, Abbosh PH, Bellmunt J, Plimack ER, Lazaro JB, Solit DB, Bajorin D, Rosenberg JE, D’Andrea AD, Riaz N, Van Allen EM, Iyer G, Mouw KW. ERCC2 Helicase Domain Mutations Confer Nucleotide Excision Repair Deficiency and Drive Cisplatin Sensitivity in Muscle-Invasive Bladder Cancer. Clin Cancer Res. 2019 Feb 1;25(3):977-988. PubMed, PubMedCentral,CrossRef
  8. Plimack ER, Dunbrack RL, Brennan TA, Andrake MD, Zhou Y, Serebriiskii IG, Slifker M, Alpaugh K, Dulaimi E, Palma N, Hoffman-Censits J, Bilusic M, Wong YN, Kutikov A, Viterbo R, Greenberg RE, Chen DY, Lallas CD, Trabulsi EJ, Yelensky R, McConkey DJ, Miller VA, Golemis EA, Ross EA. Defects in DNA Repair Genes Predict Response to Neoadjuvant Cisplatin-based Chemotherapy in Muscle-invasive Bladder Cancer. Eur Urol. 2015 Dec;68(6):959-67. PubMed, PubMedCentral, CrossRef
  9. Kleinberg LR, Catalano PJ, Forastiere AA, Keller SM, Mitchel EP, Anne PR, Benson AB 3rd. Eastern Cooperative Oncology Group and American College of Radiology Imaging Network Randomized Phase 2 Trial of Neoadjuvant Preoperative Paclitaxel/Cisplatin/Radiation Therapy (RT) or Irinotecan/Cisplatin/RT in Esophageal Adenocarcinoma: Long-Term Outcome and Implications for Trial Design. Int J Radiat Oncol Biol Phys. 2016 Mar 15;94(4):738-46.  PubMed, PubMedCentral, CrossRef
  10. Chan D, Zhou Y, Chui CH, Lam KH, Law S, Chan AS, Li X, Lam AK, Tang JCO. Expression of Insulin-Like Growth Factor Binding Protein-5 (IGFBP5) Reverses Cisplatin-Resistance in Esophageal Carcinoma. Cells. 2018 Sep 20;7(10). pii: E143.  PubMed, PubMedCentral, CrossRef
  11. Fennell DA, Summers Y, Cadranel J, Benepal T, Christoph DC, Lal R, Das M, Maxwell F, Visseren-Grul C, Ferry D. Cisplatin in the modern era: The backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat Rev. 2016 Mar;44:42-50. PubMed, CrossRef
  12. Senan S, Brade A, Wang LH, Vansteenkiste J, Dakhil S, Biesma B, Martinez Aguillo M, Aerts J, Govindan R, Rubio-Viqueira B, Lewanski C, Gandara D, Choy H, Mok T, Hossain A, Iscoe N, Treat J, Koustenis A, San Antonio B, Chouaki N, Vokes E. PROCLAIM: Randomized Phase III Trial of Pemetrexed-Cisplatin or Etoposide-Cisplatin Plus Thoracic Radiation Therapy Followed by Consolidation Chemotherapy in Locally Advanced Nonsquamous Non-Small-Cell Lung Cancer. J Clin Oncol. 2016 Mar 20;34(9):953-62. PubMed, CrossRef
  13. Hanigan MH, Devarajan P. Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther. 2003;1:47-61. PubMed, PubMedCentral
  14. Jordan P, Carmo-Fonseca M. Molecular mechanisms involved in cisplatin cytotoxicity. Cell Mol Life Sci. 2000 Aug;57(8-9):1229-35. PubMed, CrossRef
  15. Kröning R, Lichtenstein AK, Nagami GT. Sulfur-containing amino acids decrease cisplatin cytotoxicity and uptake in renal tubule epithelial cell lines. Cancer Chemother Pharmacol. 2000;45(1):43-9. PubMed, CrossRef
  16. Shalkami AS, Hassan MIA, Abd El-Ghany AA. Perindopril regulates the inflammatory mediators, NF-κB/TNF-α/IL-6, and apoptosis in cisplatin-induced renal dysfunction. Naunyn Schmiedebergs Arch Pharmacol. 2018 Nov;391(11):1247-1255.  PubMed, CrossRef
  17. Sadowitz PD, Hubbard BA, Dabrowiak JC, Goodisman J, Tacka KA, Aktas MK, Cunningham MJ, Dubowy RL, Souid AK. Kinetics of cisplatin binding to cellular DNA and modulations by thiol-blocking agents and thiol drugs. Drug Metab Dispos. 2002 Feb;30(2):183-90. PubMed, CrossRef
  18. Cohen SM, Lippard SJ. Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucleic Acid Res Mol Biol. 2001;67:93-130. PubMed, CrossRef
  19. Mora Lde O, Antunes LM, Francescato HD, Bianchi Mde L. The effects of oral glutamine on cisplatin-induced nephrotoxicity in rats. Pharmacol Res. 2003 Jun;47(6):517-22. PubMed, CrossRef
  20. Razzaque MS. Cisplatin nephropathy: is cytotoxicity avoidable? Nephrol Dial Transplant. 2007 Aug;22(8):2112-6. PubMed, CrossRef
  21. Taguchi T, Nazneen A, Abid MR, Razzaque MS. Cisplatin-associated nephrotoxicity and pathological events. Contrib Nephrol. 2005;148:107-121. PubMed, CrossRef
  22. Cetin R, Devrim E, Kiliçoğlu B, Avci A, Candir O, Durak I. Cisplatin impairs antioxidant system and causes oxidation in rat kidney tissues: possible protective roles of natural antioxidant foods. J Appl Toxicol. 2006 Jan-Feb;26(1):42-6. PubMed, CrossRef
  23. Zhang JG, Lindup WE. Role of mitochondria in cisplatin-induced oxidative damage exhibited by rat renal cortical slices. Biochem Pharmacol. 1993 Jun 9;45(11):2215-22. PubMed, CrossRef
  24. Baraboy VA, Shestakova EN. Selenium: the biological role and antioxidant activity. Ukr Biokhim Zhurn. 2004 Jan-Feb;76(1):23-32. (In Russian). PubMed
  25. Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019 Mar;111:802-812. PubMed, CrossRef
  26. Onanuga K, Begley U, Begley TJ. Understanting the role of selenium in reactive oxygen species management in colorectal cancers. Free Radic Biol Med. 2016;100(Suppl):S127-S128. CrossRef
  27. Yang Y, Liu H, Liu F, Dong Z. Mitochondrial dysregulation and protection in cisplatin nephrotoxicity. Arch Toxicol. 2014 Jun;88(6):1249-56.  PubMed, PubMedCentral, CrossRef
  28. Chakraborty P, Roy SS, Sk UH, Bhattacharya S. Amelioration of cisplatin-induced nephrotoxicity in mice by oral administration of diphenylmethyl selenocyanate. Free Radic Res. 2011 Feb;45(2):177-87.  PubMed, CrossRef
  29. Ghosh P, Roy SS, Chakraborty P, Ghosh S, Bhattacharya S. Effects of organoselenium compound 2-(5-selenocyanato-pentyl)-benzo[de]isoquinoline 1,3-dione on cisplatin induced nephrotoxicity and genotoxicity: an investigation of the influence of the compound on oxidative stress and antioxidant enzyme system.  BioMetals. 2013;26(1):61-73. CrossRef
  30. Xu C, Qiao L, Ma L, Guo Y, Dou X, Yan S, Zhang B, Roman A. Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate intestinal epithelial barrier dysfunction caused by oxidative stress via Nrf2 signaling-mediated mitochondrial pathway. Int J Nanomedicine. 2019 Jun 18;14:4491-4502.  PubMed, PubMedCentral, CrossRef
  31. Naziroglu M, Karaoğlu A, Aksoy AO. Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology. 2004 Feb 15;195(2-3):221-30. PubMed, CrossRef, PubMedCentral, CrossRef
  32. Francescato HD, Costa RS, Rodrigues Camargo SM, Zanetti MA, Lavrador MA, Bianchi MD. Effect of oral selenium administration on cisplatin-induced nephrotoxicity in rats. Pharmacol Res. 2001 Jan;43(1):77-82. PubMed, CrossRef
  33. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979 Jun;95(2):351-8. PubMed, CrossRef
  34. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967 Jul;70(1):158-69. PubMed
  35. Kim YK, Jung JS, Lee SH, Kim YW. Effects of antioxidants and Ca2+ in cisplatin-induced cell injury in rabbit renal cortical slices. Toxicol Appl Pharmacol. 1997 Oct;146(2):261-9. PubMed, CrossRef
  36. Mukhopadhyay P, Horváth B, Zsengellér Z, Zielonka J, Tanchian G, Holovac E, Kechrid M, Patel V, Stillman IE, Parikh SM, Joseph J, Kalyanaraman B, Pacher P. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free Radic Biol Med. 2012 Jan 15;52(2):497-506. PubMed, PubMedCentral, CrossRef
  37. Mansour MA, Nagi MN, El-Khatib AS, Al-Bekairi AM. Effects of thymoquinone on antioxidant enzyme activities, lipid peroxidation and DT-diaphorase in different tissues of mice: a possible mechanism of action. Cell Biochem Funct. 2002 Jun;20(2):143-51. PubMed, CrossRef
  38. Ateşşahin A, Sahna E, Türk G, Ceribaşi AO, Yilmaz S, Yüce A, Bulmuş O. Chemoprotective effect of melatonin against cisplatin-induced testicular toxicity in rats. J Pineal Res. 2006 Aug;41(1):21-7. PubMed, CrossRef
  39. Matés JM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology. 2000 Nov 16;153(1-3):83-104. PubMed, CrossRef
  40. Kaneko S, Feinstone SM, Miller RH. Rapid and sensitive method for the detection of serum hepatitis B virus DNA using the polymerase chain reaction technique. J Clin Microbiol. 1989 Sep;27(9):1930-3. PubMed, PubMedCentral
  41. Patent US5086764A. Gilman T. Absorbent dressing. Publ. 1992.
  42. Kyle RA, Greipp PR. Amyloidosis (AL). Clinical and laboratory features in 229 cases. Mayo Clin Proc. 1983 Oct;58(10):665-83. PubMed
  43. Sánchez-Chardi A, Marques CC, Nadal J, da Luz Mathias M. Metal bioaccumulation in the greater white-toothed shrew, Crocidura russula, inhabiting an abandoned pyrite mine site. Chemosphere. 2007 Feb;67(1):121-30.  PubMed, CrossRef
  44. Ramesh G, Reeves WB. Salicylate reduces cisplatin nephrotoxicity by inhibition of tumor necrosis factor-alpha. Kidney Int. 2004 Feb;65(2):490-9. PubMed, CrossRef
  45. Combs GF Jr, Gray WP. Chemopreventive agents: selenium. Pharmacol Ther. 1998 Sep;79(3):179-92. PubMed, CrossRef
  46. Morris JS, Crane SB. Selenium toxicity from a misformulated dietary supplement, adverse health effects, and the temporal response in the nail biologic monitor. Nutrients. 2013 Mar 28;5(4):1024-57.  PubMed, PubMedCentral, CrossRef
  47. Reid ME, Stratton MS, Lillico AJ, Fakih M, Natarajan R, Clark LC, Marshall JR. A report of high-dose selenium supplementation: response and toxicities. J Trace Elem Med Biol. 2004;18(1):69-74. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.