Ukr.Biochem.J. 2019; Volume 91, Issue 6, Nov-Dec, pp. 67-78


Oxidative stress and thiols depletion impair tibia fracture healing in young men with type 2 diabetes

H. I. Falfushynska1, O. I. Horyn1, D. V. Poznansky1, D. V. Osadchuk2,
T. О. Savchyn3, T. І. Krytskyi2, L. S. Merva1, S. Z. Hrabra1

1Ternopil Volodymyr Hnatiuk National Pedagogical University, Ukraine;
2I. Horbachevsky Ternopil National Medical University, Ukraine;
3Ternopil Ivan Puluj National Technical University, Ukraine;

Received: 05 May 2019; Accepted: 18 October 2019

Diabetes mellitus is a metabolic disorder that enhances fracture risk and hinders bone formation. The aim of the present study was to evaluate the parameters of oxidative stress, metallothioneins (MTs), metabolic changes and cytotoxicity signs in blood of young men with (DTF group) and without (TF group) type 2 diabetes (T2D) mellitus who had a tibia fracture due to trauma in relation to specific markers of bone formation. The level of reactive oxygen species was determined using a ROS-sensitive fluorescent dye dihydrorhodamine, DNA fragmentation was detected with Hoescht 33342 fluorescent dye and caspase-3 was assessed in terms of acetyl-Asp-Glu-Val-Asp p-nitroanilide. All other studied indices were determined by standard spectrometric methods. Our results revealed the significant effect of T2D on the bone healing. Indeed, the indices variation in the DTF group were significantly deeper as compared to group TF. The bone fracture in both TF and DTF groups had led to a significant decrease in antioxidants activity and/or level and a consistent increase in signs of oxidative damage. The concentration of MTs was also altered by trauma, but ina group-specific manner: an increase was noted in TF patients after trauma while in diabetes group a decrease in MTs was observed. Likewise, glutathione was strongly suppressed (by -64%) in DTF group. Tibia fracture provoked cytotoxicity which was manifested by increasing lactate dehydrogenase (LDH), cholinesterase and caspase-3 activity, the key effector of apoptosis in osteoclasts. The activity of alkaline phosphatase and total calcium increased only in TF group which demonstrated adequate remodelling process. The most prominent indices for groups splitting include ROS concentration, caspase 3, glutathione transferase and LDH activities mostly conjoint to DTF group. In sum, T2D impairs bone healing under condition of severe oxidative stress and cellular thiols depletion which result in an increase in apoptosis and DNA fragmentation. Our findings establish a biochemical link between increased oxidative stress and reduced bone markers and provide a rational for further studies investigating the role of pro- and antioxidants in bone healing.

Keywords: , ,


  1. Amin S, Achenbach SJ, Atkinson EJ, Khosla S, Melton LJ 3rd. Trends in fracture incidence: a population-based study over 20 years. J Bone Miner Res. 2014 Mar;29(3):581-9. PubMed, PubMedCentral, CrossRef
  2. Alemdaroğlu KB, Tiftikçi U, Iltar S, Aydoğan NH, Kara T, Atlihan D, Ateşalp AS. Factors affecting the fracture healing in treatment of tibial shaft fractures with circular external fixator. Injury. 2009 Nov;40(11):1151-6. PubMed, CrossRef
  3. Mirhadi S, Ashwood N, Karagkevrekis B. Factors influencing fracture healing. Trauma. 2013;15(2):140-155.   CrossRef
  4. Hernandez RK, Do TP, Critchlow CW, Dent RE, Jick SS. Patient-related risk factors for fracture-healing complications in the United Kingdom General Practice Research Database. Acta Orthop. 2012 Dec;83(6):653-60. PubMed, PubMed, CrossRef
  5. Singh R, Devi S, Gollen R. Role of free radical in atherosclerosis, diabetes and dyslipidaemia: larger-than-life. Diabetes Metab Res Rev. 2015 Feb;31(2):113-26. PubMed, CrossRef
  6. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006 Mar 10;160(1):1-40.  PubMed, CrossRef
  7. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med. 2000 May 15;28(10):1456-62. PubMed, CrossRef
  8. Domazetovic V, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT. Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab. 2017 May-Aug;14(2):209-216.  PubMed, PubMedCentral, CrossRef
  9. Marin C, Luyten FP, Van der Schueren B, Kerckhofs G, Vandamme K. The Impact of Type 2 Diabetes on Bone Fracture Healing. Front Endocrinol (Lausanne). 2018 Jan 24;9:6.  PubMed, PubMedCentral, CrossRef
  10. Sundararaghavan V, Mazur MM, Evans B, Liu J, Ebraheim NA. Diabetes and bone health: latest evidence and clinical implications. Ther Adv Musculoskelet Dis. 2017 Mar;9(3):67-74.  PubMed, PubMedCentral, CrossRef
  11. Sanguineti R, Puddu A, Mach F, Montecucco F, Viviani GL. Advanced glycation end products play adverse proinflammatory activities in osteoporosis. Mediators Inflamm. 2014;2014:975872. PubMed, PubMedCentral, CrossRef
  12. Jiao H, Xiao E, Graves DT. Diabetes and Its Effect on Bone and Fracture Healing. Curr Osteoporos Rep. 2015 Oct;13(5):327-35. PubMed, PubMedCentral, CrossRef
  13. Gagnon C, Magliano DJ, Ebeling PR, Dunstan DW, Zimmet PZ, Shaw JE, Daly RM. Association between hyperglycaemia and fracture risk in non-diabetic middle-aged and older Australians: a national, population-based prospective study (AusDiab). Osteoporos Int. 2010 Dec;21(12):2067-74. PubMed, CrossRef
  14. Maret W. Redox biochemistry of mammalian metallothioneins. J Biol Inorg Chem. 2011 Oct;16(7):1079-86. PubMed, CrossRef
  15. Won Y, Shin Y, Chun CH, Cho Y, Ha CW, Kim JH, Chun JS. Pleiotropic roles of metallothioneins as regulators of chondrocyte apoptosis and catabolic and anabolic pathways during osteoarthritis pathogenesis. Ann Rheum Dis. 2016 Nov;75(11):2045-2052.  PubMed, PubMedCentral, CrossRef
  16. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005 Jan 21;307(5708):384-7. PubMed, CrossRef
  17. Falfushynska HI, Gnatyshyna LL, Deneha HV, Osadchuk OY, Stoliar OB. Manifestations of oxidative stress and molecular damages in ovarian cancer tissue. Ukr Biochem J. 2015 Sep-Oct;87(5):93-102. PubMed, CrossRef
  18. Falfushynska HI, Horyn OI, Khoma VV, Tereshchuk GV, Osadchuk DV, Rusnak NI, Stoliar OB. Evaluation of metallothioneins, oxidative stress and signs of cytotoxicity in young obese women. Ukr Biochem J. 2018;90(5):71-80.  CrossRef
  19. Falfushynska HI, Gnatyshyna LL, Osadchuk OY, Shidlovski VO, Stoliar OB. Trace elements storage peculiarities and metallothionein content in human thyroid gland under iodine deficiency euthyroid nodular goiter. Ukr Biochem J. 2014 May-Jun;86(3):107-13. (In Ukrainian). PubMed, CrossRef
  20. Falfushynska HI, Gnatyshyna LL, Osadchuk DV, Shidlovski VO,  Stoliar ОB. Metal-binding functions and antioxidant properties in human thyroid gland under iodine deficient nodular colloidal goiter. Ukr Biokhim Zhurn. 2011 Nov-Dec;83(6):92-7. (In Ukrainian). PubMed
  21. Aebi H, Wyss SR, Scherz B, Skvaril F. Heterogeneity of erythrocyte catalase II. Isolation and characterization of normal and variant erythrocyte catalase and their subunits. Eur J Biochem. 1974 Oct 1;48(1):137-45. PubMed, CrossRef
  22. Viarengo A, Burlando B, Cavaletto M, Marchi B, Ponzano E, Blasco J. Role of metallothionein against oxidative stress in the mussel Mytilus galloprovincialis. Am J Physiol. 1999 Dec;277(6):R1612-9. PubMed, CrossRef
  23. Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357-63. PubMed, CrossRef
  24. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979 Jun;95(2):351-8. PubMed, CrossRef
  25. Anderson ME. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985;113:548-55. PubMed, CrossRef
  26. Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980 Jul 15;106(1):207-12. PubMed, CrossRef
  27. Viarengo A, Ponzano E, Dondero F, Fabbri R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar Environ Res. 1997;44(1):69-84.  CrossRef
  28. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130-9. PubMed
  29. Bergmeyer HU, Bernt E. UV-Assay with Pyruvate and NADH. Methods Enzym Anal. 1974;574-579.  CrossRef
  30. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88-95. PubMed, CrossRef
  31. Bonomini M, Dottori S, Amoroso L, Arduini A, Sirolli V. Increased platelet phosphatidylserine exposure and caspase activation in chronic uremia. J Thromb Haemost. 2004 Aug;2(8):1275-81. PubMed, CrossRef
  32. Olive PL. DNA precipitation assay: a rapid and simple method for detecting DNA damage in mammalian cells. Environ Mol Mutagen. 1988;11(4):487-95. PubMed, CrossRef
  33. Camozzi V, Tossi A, Simoni E, Pagani F, Francucci CM, Moro L. Role of biochemical markers of bone remodeling in clinical practice. J Endocrinol Invest. 2007;30(6 Suppl):13-7. PubMed
  34. Kruse K, Kracht U. Evaluation of serum osteocalcin as an index of altered bone metabolism. Eur J Pediatr. 1986 Apr;145(1-2):27-33. PubMed, CrossRef
  35. Sandukji A, Al-Sawaf H, Mohamadin A, Alrashidi Y, Sheweita SA. Oxidative stress and bone markers in plasma of patients with long-bone fixative surgery: role of antioxidants. Hum Exp Toxicol. 2011 Jun;30(6):435-42. PubMed, CrossRef
  36. Almeida M, O’Brien CA. Basic biology of skeletal aging: role of stress response pathways. J Gerontol A Biol Sci Med Sci. 2013 Oct;68(10):1197-208. PubMed, PubMedCentral, CrossRef
  37. Li M, Zhao L, Liu J, Liu AL, Zeng WS, Luo SQ, Bai XC. Hydrogen peroxide induces G2 cell cycle arrest and inhibits cell proliferation in osteoblasts. Anat Rec (Hoboken). 2009 Aug;292(8):1107-13. PubMed, CrossRef
  38. Sun YX, Xu AH, Yang Y, Li J. Role of Nrf2 in bone metabolism. J Biomed Sci. 2015 Oct 29;22:101.  PubMed, PubMedCentral, CrossRef
  39. Ibáñez L, Ferrándiz ML, Brines R, Guede D, Cuadrado A, Alcaraz MJ. Effects of Nrf2 deficiency on bone microarchitecture in an experimental model of osteoporosis. Oxid Med Cell Longev. 2014;2014:726590. PubMed, PubMedCentral, CrossRef
  40. Lazaro I, Lopez-Sanz L, Bernal S, Oguiza A, Recio C, Melgar 1, Jimenez-Castilla L, Egido J, Madrigal-Matute J, Gomez-Guerrero C. Nrf2 Activation Provides Atheroprotection in Diabetic Mice Through Concerted Upregulation of Antioxidant, Anti-inflammatory, and Autophagy Mechanisms. Front Pharmacol. 2018 Jul 31;9:819.  PubMed, PubMedCentral, CrossRef
  41. Rao LG, Rao AV. Oxidative Stress and Antioxidants in the Risk of Osteoporosis – Role of the Antioxidants Lycopene and Polyphenols. in: Topics in Osteoporosis. 2013.  CrossRef
  42. Niedowicz DM, Daleke DL. The role of oxidative stress in diabetic complications. Cell Biochem Biophys. 2005;43(2):289-330. PubMed, CrossRef
  43. Morikawa D, Nojiri H, Saita Y, Kobayashi K, Watanabe K, Ozawa Y, Koike M, Asou Y, Takaku T, Kaneko K, Shimizu T. Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading. J Bone Miner Res. 2013 Nov;28(11):2368-80. PubMed, CrossRef
  44. Miura M, Chen XD, Allen MR, Bi Y, Gronthos S, Seo BM, Lakhani S, Flavell RA, Feng XH, Robey PG, Young M, Shi S. A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest. 2004 Dec;114(12):1704-13. PubMed, PubMedCentral, CrossRef
  45. Li H, Li C, Yi X, Liu H, Wang Y. Effects of sodium alendronate on osteoporosis and apoptosis-related factors Cyt C, Apaf-1 and caspase-9. Biomed Res. 2018;29(3):416-420.  CrossRef
  46. Plotkin LI, Gortazar AR, Davis HM, Condon KW, Gabilondo H, Maycas M, Allen MR, Bellido T. Inhibition of osteocyte apoptosis prevents the increase in osteocytic receptor activator of nuclear factor κB ligand (RANKL) but does not stop bone resorption or the loss of bone induced by unloading. J Biol Chem. 2015 Jul 31;290(31):18934-42. PubMed, PubMedCentral, CrossRef
  47. Habeebu SS, Liu J, Liu Y, Klaassen CD. Metallothionein-null mice are more susceptible than wild-type mice to chronic CdCl(2)-induced bone injury. Toxicol Sci. 2000 Jul;56(1):211-9. PubMed, CrossRef
  48. Sharma P, Senthilkumar RD, Brahmachari V, Sundaramoorthy E, Mahajan A, Sharma A, Sengupta S. Mining literature for a comprehensive pathway analysis: a case study for retrieval of homocysteine related genes for genetic and epigenetic studies. Lipids Health Dis. 2006 Jan 23;5:1. PubMed, PubMedCentral, CrossRef
  49. Maurya PK, Rizvi SI. Age-dependent changes in glutathione-s-transferase: correlation with total plasma antioxidant potential and red cell intracellular glutathione. Indian J Clin Biochem. 2010 Oct;25(4):398-400. PubMed, PubMedCentral, CrossRef
  50. Sato T, Abe T, Chida D, Nakamoto N, Hori N, Kokabu S, Sakata Y, Tomaru Y, Iwata T, Usui M, Aiko K, Yoda T. Functional role of acetylcholine and the expression of cholinergic receptors and components in osteoblasts. FEBS Lett. 2010 Feb 19;584(4):817-24. PubMed, CrossRef
  51. Liu PS, Chen YY, Feng CK, Lin YH, Yu TC. Muscarinic acetylcholine receptors present in human osteoblast and bone tissue. Eur J Pharmacol. 2011 Jan 10;650(1):34-40. PubMed, CrossRef
  52. Inkson CA, Brabbs AC, Grewal TS, Skerry TM, Genever PG. Characterization of acetylcholinesterase expression and secretion during osteoblast differentiation. Bone. 2004 Oct;35(4):819-27. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.