Ukr.Biochem.J. 2020; Volume 92, Issue 1, Jan-Feb, pp. 103-112

doi: https://doi.org/10.15407/ubj92.01.103

Biochemical indicators of green photosynthetic bacteria Chlorobium limicola response to Cu(2+) action

T. B. Sehin1, S. O. Hnatush1, O. D. Maslovska1,
A. A. Halushka1, Y. H. Zaritska2

1Ivan Franko National University of Lviv, Ukraine;
2State Scientific-Research Control Institute of Veterinary
Medicinal Products and Feed Additives, Lviv, Ukraine;
e-mail: SeginT@ukr.net

Received: 11 March 2019; Accepted: 29 November 2019

Photolithotrophic sulfur bacteria are involved in  biota functioning and have  a biotechnological potential for bioremediation of contaminated environment, but the mechanisms of xenobiotics, in particular of heavy metal ions damaging action and the pathways of photolithotrophic bacteria adaptation  under these conditions have not been established. In this work, the biochemical indicators of green photosynthetic bacteria Chlorobium limicola response to Cu ions were studied. C. limicola cells were incubated during one hour in buffer containing copper (II) sulfate in 0.05–0.5 mM concentrations and grown for 8 days in GSB medium. The content of Cu2+ in cells was estimated by atomic absorption spectroscopy. The activity of enzymes of antioxidant defense, photosynthetic pigments and glutathione content, indexes of lipids unsaturation and membrane viscosity as markers of  membrane fluidity were estimated. It was shown that the response of green photosynthetic bacteria C. limicola to Cu2+ action varied  depending on cations concentration. Under the influence of metal salt at 0.05 mM concentration, the activity of antioxidant enzymes, GSH/GSSG ratio, the content of photosynthetic pigments and membrane fluidity indexes were higher as compared with control. Under the increase of copper (II) sulfate concentration to 0.25 mM, the activity of antioxidant  enzymes was lower compared to the response of the cells under the influence of 0.05 mM copper (II) and the GSSG content was increased.  Under the influence of 0.5 mM copper (II) the indexes of membrane fluidity did not differ from the control, but superoxide dismutase and peroxidase activity inhibition and  the further decrease of GSH/GSSG ratio were observed followed by the highest Cu2+ cations accumulation in cells and significant decrease of  bacteria biomass growth.

Keywords: , , , ,


References:

  1. Frigaard NU, Dahl C. Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol. 2009;54:103-200.  PubMed, CrossRef
  2. Frigaard NU. Biotechnology of Anoxygenic Phototrophic Bacteria. Adv Biochem Eng Biotechnol. 2016;156:139-154. PubMed, CrossRef
  3. Hnatush S, Goryshnyi M, Segin T. Photosynthetic green sulfur bacteria, isolated from Yavoriv lake (Lviv region, Ukraine). Inter-Medical. J. 2014;(3(3)):63-68. (In Russian).
  4. Solioz M, Stoyanov JV. Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev. 2003 Jun;27(2-3):183-95. PubMed, CrossRef
  5. Ezraty B, Gennaris A, Barras F, Collet JF. Oxidative stress, protein damage and repair in bacteria. Nat Rev Microbiol. 2017 Jul;15(7):385-396. PubMed, CrossRef
  6. Li H, Jubelirer S, Garcia Costas AM, Frigaard NU, Bryant DA. Multiple antioxidant proteins protect Chlorobaculum tepidum against oxygen and reactive oxygen species. Arch Microbiol. 2009 Nov;191(11):853-67. PubMed, CrossRef
  7. Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vamathevan J, Khouri H, White O, Gruber TM, Ketchum KA, Venter JC, Tettelin H, Bryant DA, Fraser CM. The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA. 2002 Jul 9;99(14):9509-14.  PubMed, PubMedCentral, CrossRef
  8. Baysse C, O’Gara F. Role of membrane structure during stress signaling and adaptation in Pseudomonas. Pseudomonas. 2007; 7:193-224. CrossRef
  9. Segin TB, Hnatush SО, Gorishniy MB. The processes of lipid peroxidation in the cells of Chlorobium limicola IMV K-8 under the influence of copper (II) sulfate. Visn Dnipropetr Univ. Ser Biol Ekol. 2016; 24(1):72-77. (In Ukrainian). CrossRef
  10. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265-75.
    PubMed
  11. Tarabas OV, Hnatush SO, Halushka AA, Moroz OM. Pigments of Rhodopseudomonas yavorovii IMV B-7620. Microbiol Biotechnol. 2018;(1):57-65. (In Ukrainian). CrossRef
  12.  Khalikova MA, Fadeeva DA., Zinchenko AA, Zhilyakova ET, Novikov OO. Application of the method of reversed-phase high performance liquid chromatography to separate mixtures and identification of taurine, carnosine and glutathione. Belgorod State Univ Sci Bull. Ser Med Pharmacy. 2010;22(93):157-160. (In Russian).
  13. Lushchak VI, Bagnyukova TV, Lushchak OV. Indices of oxidative stress. 1. TBA-reactive substances and carbonylproteins. Ukr Biokhim Zhurn. 2004;76(3):136-141. (In Ukrainian). PubMed
  14. Golovchak N.P., Tarnavskaya A.V., Kotsyumbas G. I., Sanagursky D.I. Processes of peroxidation of lipids in living organisms. L.: Ivan Franko National University of Lviv, 2012. 250 p.(In Ukrainian).
  15. Bligh EG, Dyer WJ.  A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911-7. PubMed, CrossRef
  16. Maslovska O, Hnatush S, Halushka A. Fatty acids composition of Desulfuromonas acetoxidans ІМV В-7384 cells under the influence of ferric citrate. Studia Biologica. 2014;8(3-4):87-98. (In Ukrainian). CrossRef
  17.  Davies MJ. Protein oxidation and peroxidation. Biochem J. 2016 Apr 1;473(7):805-25. PubMed, PubMedCentral, CrossRef
  18.  Regime of access: https://www.ncbi.nlm.nih.gov/
  19.  Gorishny M., Gudz S., Hnatush S. Bacterial photosynthesis. L.: Ivan Franko National University of Lviv, 2011. 179 p. (In Ukrainian).
  20.  Maresca JA, Romberger SP, Bryant DA. Isorenieratene biosynthesis in green sulfur bacteria requires the cooperative actions of two carotenoid cyclases. J Bacteriol. 2008 Oct;190(19):6384-91. PubMed, PubMedCentral, CrossRef
  21. Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. 2012;2012:736837. PubMed, PubMedCentral, CrossRef
  22. Helbig K, Bleuel C, Krauss GJ, Nies DH. Glutathione and transition-metal homeostasis in Escherichia coli. J Bacteriol. 2008 Aug;190(15):5431-8.  PubMed, PubMedCentral, CrossRef
  23. Segin T, Hnatush S, Maslovska O, Vasyliv O. Enzymes activity of glutathione antioxidant system of Chlorobium limicola IMV K-8 bacteria under the influence of copper (II) sulfate. Microbiol Biotechnol. 2018;(1):39-46. (In Ukrainian). CrossRef
  24. Toledano MB, Huang B. Microbial 2-Cys Peroxiredoxins: Insights into Their Complex Physiological Roles. Mol Cells. 2016 Jan;39(1):31-9. PubMed, PubMed, CrossRef
  25. Segin T, Hnatush S, Maslovska O, Vasyliv O. Changes of fatty acid composition of Chlorobium limicola IMV K-8 cells under the influence of copper (II) sulfate. Mikrobiol Zh. 2018; 80(3):40-52. CrossRef
  26. Bondarczuk K, Piotrowska-Seget Z. Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biol Toxicol. 2013 Dec;29(6):397-405. PubMed, PubMedCentral, CrossRef
  27. Magdaong NCM, Blankenship RE. Photoprotective, excited-state quenching mechanisms in diverse photosynthetic organisms. J Biol Chem. 2018 Apr 6;293(14):5018-5025. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.