Ukr.Biochem.J. 2020; Volume 92, Issue 3, May-Jun, pp. 6-21
doi: https://doi.org/10.15407/ubj92.03.006
COVID-19 infection: disease mechanism, vascular dysfunction, immune responses, markers, multiorgan failure, treatments, and vaccination
Vari S. G.
International Research and Innovation in Medicine Program Cedars-Sinai Medical Center, Los Angeles, CA, USA;
e-mail: vari@cshs.org
The new SARS-CoV-2 virus is a great danger for the worldwide population since there is no known pre-immunity, no specific treatment, and no vaccine. Still, the testing and tracing are the best tools to isolate the infected and prevent the spread of COVID-19. The major goals are to save lives, reduce the mortality rate, increase the survival rate of those are in severe or critical conditions, reduce the hospital stay and accelerate the recovery. This review summarizes the findings on the novel coronavirus that causes COVID-19 and outlines information about symptoms, testing, disease mechanism, vascular dysfunction, immune responses, treatments, and vaccination. At this time no vaccine is available to prevent COVID-19. A literature review reveals that more research is necessary to investigate the interactions between respiratory viruses, human coronaviruses, and the new SARS-CoV-2 virus in the infected population to guide the design of COVID-19 specific therapeutics and vaccines. Almost every government on earth has realized that daily life cannot return to normal until citizens have built up antibodies to safeguard them from the virus. Scientists and manufacturers worldwide are accelerating COVID-19 vaccine research, and pharmaceutical companies are already investing in the large-scale production of vaccines. A synopsis of the most recent sources presented in this review was the starting point for several COVID-19 research projects in the Regional Cooperation for Health, Science and Technology (RECOOP HST) Association managed by Cedars – Sinai Medical Center to gain a better understanding of the COVID-19 disease.
Keywords: COVID-19 infection, disease mechanism, immune responses, markers, multiorgan failure, symptoms, testing, treatments, vaccination, vascular dysfunction
References:
- Lapointe-Shaw L, Rader B, Astley CM, Hawkins JB, Bhatia D, Schatten WJ, Lee TC, Liu JJ, Ivers NM, Stall NM, Gournis E, Tuite AR, Fisman DN, Bogoch II, Brownstein JS. Syndromic Surveillance for COVID-19 in Canada. 2020. Available from : https://doi.org/10.1101/2020.05.19.20107391. CrossRef
- WHO Coronavirus Disease (COVID-19) Dashboard. Covid19.who.int. 2020. [accessed 6 Aug 2020] Available from: https://covid19.who.int/?gclid=CjwKCAjwsan5BRAOEiwALzomXzz0vRVCZlHgJsmoxG6p_DfqTxR-6sNm8yGkGQfcV4vocElSL5bGVRoCdr0QAvD_BwE
- Hui DSC, Zumla A. Severe Acute Respiratory Syndrome: Historical, Epidemiologic, and Clinical Features. Infect Dis Clin North Am. 2019;33(4):869-889. PubMed, PubMedCentral, CrossRef
- Assessing Risk Factors for Severe COVID-19 Illness CDC. Coronavirus Disease 2019 (COVID-19). Centers for Disease Control and Prevention. 2020. [accessed 6 Aug 2020] Available from: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/assessing-risk-factors.html
- Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. PubMed, PubMedCentral, CrossRef
- La Vignera S, Cannarella R, Condorelli RA, Torre F, Aversa A, Calogero AE. Sex-Specific SARS-CoV-2 Mortality: Among Hormone-Modulated ACE2 Expression, Risk of Venous Thromboembolism and Hypovitaminosis D. Int J Mol Sci. 2020;21(8):2948. PubMed, PubMedCentral, CrossRef
- Sharma G, Volgman AS, Michos ED. Sex Differences in Mortality from COVID-19 Pandemic: Are Men Vulnerable and Women Protected? JACC Case Rep. 2020;2(9):1407-1410. PubMed, PubMedCentral, CrossRef
- Steenblock C, Todorov V, Kanczkowski W, Eisenhofer G, Schedl A, Wong ML, Licinio J, Bauer M, Young AH, Gainetdinov RR, Bornstein SR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the neuroendocrine stress axis. Mol Psychiatry. 2020;25(8):1611-1617. PubMed, PubMedCentral, CrossRef
- Patel R, Babady E, Theel ES, Storch GA, Pinsky BA, George KSt, Smith TC, Bertuzzi S. Report from the American Society for Microbiology COVID-19 International Summit, 23 March 2020: Value of Diagnostic Testing for SARS-CoV-2/COVID-19. mBio. 2020;11(2):e00722-20. PubMed, PubMedCentral, CrossRef
- Coronavirus Disease 2019 (COVID-19). Centers for Disease Control and Prevention. 2020. [accessed 6 Aug 2020] Available from: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/testing.html.
- Almeida J. June Almeida (née Hart). BMJ. 2008;336(7659):1511. CrossRef
- Tyrrell DA, Bynoe ML. Cultivation of a Novel Type of Common-cold Virus in Organ Cultures. BMJ. 1965;1(5448):1467-1470. PubMed, PubMedCentral, CrossRef
- Almeida JD, Tyrrell DA. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J Gen Virol. 1967;1(2):175-178. PubMed, CrossRef
- Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91-98. PubMed, PubMedCentral, CrossRef
- Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181-192. PubMed, PubMedCentral, CrossRef
- Wang L, Wang Y, Ye D, Liu Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int J Antimicrob Agents. 2020;55(6):105948. PubMed, PubMedCentral, CrossRef
- Luan J, Lu Y, Gao S, Zhang L. A potential inhibitory role for integrin in the receptor targeting of SARS-CoV-2. J Infect. 2020;81(2):318-356. PubMed, PubMedCentral, CrossRef
- Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. PubMed, PubMedCentral, CrossRef
- Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-454. PubMed, PubMedCentral, CrossRef
- Flammer AJ, Anderson T, Celermajer DS, Creager MA, Deanfield J, Ganz P, Hamburg NM, Lüscher TF, Shechter M, Taddei S, Vita JA, Lerman A. The assessment of endothelial function: from research into clinical practice. Circulation. 2012;126(6):753-767. PubMed, PubMedCentral, CrossRef
- Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23(2):168-175. PubMed, CrossRef
- Varga Z, FlammerAJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-1418. PubMed, PubMedCentral, CrossRef
- Förstermann U, Münzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113(13):1708-1714. PubMed, CrossRef
- Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, Su X, Cao B. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020;395(10235):1517-1520. PubMed, PubMedCentral, CrossRef
- Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, Clark C, Iba T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023-1026. PubMed, CrossRef
- Oudkerk M, Büller HR, Kuijpers D, van Es N, Oudkerk SF, McLoud TC, Gommers D, van Dissel J, Ten Cate H, van Beek EJ. Diagnosis, Prevention, and Treatment of Thromboembolic Complications in COVID-19: Report of the National Institute for Public Health of the Netherlands. Radiology. 2020;201629. PubMed, PubMedCentral, CrossRef
- Tripodi A. D-dimer testing in laboratory practice. Clin Chem. 2011;57(9):1256-1262. PubMed, CrossRef
- Bellart J, Gilabert R, Anglès A, Piera V, Miralles RM, Monasterio J, Cabero L. Tissue factor levels and high ratio of fibrinopeptide A:D-dimer as a measure of endothelial procoagulant disorder in pre-eclampsia. Br J Obstet Gynaecol. 1999;106(6):594-597. PubMed, CrossRef
- Stefan N, Birkenfeld AL, Schulze MB, Ludwig DS. Obesity and impaired metabolic health in patients with COVID-19. Nat Rev Endocrinol. 2020;16(7):341-342. PubMed, PubMedCentral, CrossRef,
- Ryan DH, Ravussin E, Heymsfield S. COVID 19 and the Patient with Obesity – The Editors Speak Out. Obesity (Silver Spring). 2020;28(5):847. PubMed, PubMedCentral, CrossRef
- Sattar N, McInnes IB, McMurray JJV. Obesity Is a Risk Factor for Severe COVID-19 Infection: Multiple Potential Mechanisms. Circulation. 2020;142(1):4-6. PubMed, CrossRef
- Malavazos AE, Corsi Romanelli MM, Bandera F, Iacobellis G. Targeting the Adipose Tissue in COVID-19. Obesity (Silver Spring). 2020;28(7):1178-1179. PubMed, PubMedCentral, CrossRef
- Kass DA, Duggal P, Cingolani O. Obesity could shift severe COVID-19 disease to younger ages. Lancet. 2020;395(10236):1544-1545. PubMed, PubMedCentral, CrossRef
- Francisco V, Pino J, Campos-Cabaleiro V, Ruiz-Fernández C, Mera A, Gonzalez-Gay MA, Gómez R, Gualillo O. Obesity, Fat Mass and Immune System: Role for Leptin. Front Physiol. 2018;9:640. PubMed, PubMedCentral, CrossRef
- Ellul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A, Kneen R, Defres S, Sejvar J, Solomon T. Neurological associations of COVID-19. Lancet Neurol. 2020;S1474-4422(20)30221-0. PubMed, PubMedCentral, CrossRef
- Abdelnour L, Abdalla ME, Babiker S. COVID 19 infection presenting as motor peripheral neuropathy. J Formos Med Assoc. 2020;119(6):1119-1120. PubMed, PubMedCentral, CrossRef
- Bhaskar S, Bradley S, Israeli-Korn S, Menon B, Chattu VK, Thomas P, Chawla J, Kumar R, Prandi P, Ray D, Golla S, Surya N, Yang H, Martinez S, Ozgen MH, Codrington J, Jiménez González EM, Toosi M, Mohan NH, Menon KV, Chahidi A, Hengstl SM. Chronic Neurology in COVID-19 Era: Clinical Considerations and Recommendations From the REPROGRAM Consortium. Front Neurol. 2020;11:664. PubMed, PubMedCentral, CrossRef
- Fenrich M, Mrdenovic S, Balog M, Tomic S, Zjalic M, Roncevic A, Mandic D, Debeljak Z, Heffer M. SARS-CoV-2 DisseminationThrough Peripheral Nerves ExplainsMultiple Organ Injury. Front Cell Neurosci. 2020;14:229. CrossRef
- Spada C, Spera G, Riccioni M, Biancone L, Petruzziello L, Tringali A, Familiari P, Marchese M, Onder G, Mutignani M, Perri V, Petruzziello C, Pallone F, Costamagna G.A novel diagnostic tool for detecting functional patency of the small bowel: the Given patency capsule. Endoscopy. 2005;37(9):793-800. PubMed, CrossRef
- Krstic SN, Martinov JB, Sokic-Milutinovic AD, Milosavljevic TN, Krstic MN. Capsule endoscopy is useful diagnostic tool for diagnosing Meckel’s diverticulum. Eur J Gastroenterol Hepatol. 2016;28(6):702-707. PubMed, CrossRef
- Chakraborty R, Parvez S. COVID-19: An overview of the current pharmacological interventions, vaccines, and clinical trials. Biochem Pharmacol. 2020;114184. PubMed, PubMedCentral, CrossRef
- Files.covid19treatmentguidelines.nih.gov. 2020. [accessed 6 Aug 2020] Available from: https://files.covid19treatmentguidelines.nih.gov/guidelines/covid19treatmentguidelines.pdf.
- Buckland BC. The process development challenge for a new vaccine. Nat Med. 2005;11(S4):S16-S19. CrossRef
- Chowdhury R, Islam R, Sharma HK. Development of Vaccine Against SARS-CoV-2: An Updated Review. Curr Trends Pharm Res. 2020; 7(1): 90-105.
- Glossary. Covid-19tracker.milkeninstitute.org. 2020. [accessed 6 Aug 2020] Available from: https://covid-19tracker.milkeninstitute.org/glossary
- Draft landscape of COVID-19 candidate vaccines. WHO.INT. 2020. [accessed 6 Aug 2020] Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
- Meckiff BJ, Ramírez-Suástegui C, Fajardo V, Chee SJ, Kusnadi A, Simon H, Grifoni A, Pelosi E, Weiskopf D, Sette A, Ay F, Grégory Seumois, Ottensmeier CH, Vijayanand P. Single-cell transcriptomic analysis of SARS-CoV-2 reactive CD4+ T cells. Available at SSRN: https://ssrn.com/abstract=3641939 or http://dx.doi.org/10.2139/ssrn.3641939.
- Kate MacDonald The Immune Response, July 23, 2019 https://letstalkscience.ca/educational-resources/stem-in-context/immune-response
- Sette A, Crotty S. Pre-existing immunity to SARS-CoV-2: the knowns and unknowns. Nat Rev Immunol. 2020;20(8):457-458. PubMed, PubMedCentral, CrossRef
- Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM, Burger ZC, Rawlings SA, Smith DM, Phillips E, Mallal S, Lammers M, Rubiro P, Quiambao L, Sutherland A, Yu ED, da Silva Antunes R, Greenbaum J, Frazier A, Markmann AJ, Premkumar L, de Silva A, Peters B, Crotty S, Sette A, Weiskopf D. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science. 2020: eabd3871. CrossRef
- Nickbakhsh S, Ho A, Marques DFP, McMenamin J, Gunson RN, Murcia PR. Epidemiology of Seasonal Coronaviruses: Establishing the Context for the Emergence of Coronavirus Disease 2019. J Infect Dis. 2020;222(1):17-25. PubMed, PubMedCentral, CrossRef
- Chen Z, Wherry EJ. T cell responses in patients with COVID-19. Nat Rev Immunol. 2020;1-8. PubMed, PubMedCentral, CrossRef
- Meckiff, Benjamin J et al. “Single-cell transcriptomic analysis of SARS-CoV-2 reactive CD4+T cells.” bioRxiv : the preprint server for biology 2020.06.12.148916. 13 Jun. 2020, doi:10.1101/2020.06.12.148916. Preprint.
- Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, Chng MHY, Lin M, Tan N, Linster M, Chia WN, Chen MI, Wang LF, Ooi EE, Kalimuddin S, Tambyah PA, Low JGH, Tan YJ, Bertoletti A. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020 Jul 15. PubMed, CrossRef
- Magar R, Yadav P, Farimani AB. Potential Neutralizing Antibodies Discovered for Novel Corona Virus Using Machine Learning. bioRxiv 2020.03.14.992156. CrossRef
- Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006; 124(4):783–801. PubMed, CrossRef
- Nanni L. Machine learning algorithms for T-cell epitopes prediction. Neurocomputing. 2006;69(7-9):866–868. CrossRef
- Baruah V, Bose S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J Med Virol. 2020;92(5):495-500. PubMed, PubMedCentral, CrossRef
- Martin TR, Wurfel MM, Zanoni I, Ulevitch R. Targeting innate immunity by blocking CD14: Novel approach to control inflammation and organ dysfunction in COVID-19 illness. EBioMedicine. 2020;57:102836. PubMed, PubMedCentral
- Noorimotlagh Z, Karami C, Mirzaee SA, Kaffashian M, Mami S, Azizi M. Immune and bioinformatics identification of T cell and B cell epitopes in the protein structure of SARS-CoV-2: A systematic review. Int Immunopharmacol. 2020;86:106738. PubMed, PubMedCentral, CrossRef
- Netea MG, van der Meer JWM. Trained Immunity: An Ancient Way of Remembering. Cell Host Microbe. 2017;21(3):297-300. PubMed, CrossRef
This work is licensed under a Creative Commons Attribution 4.0 International License.