Ukr.Biochem.J. 2020; Volume 92, Issue 3, May-Jun, pp. 6-21

doi: https://doi.org/10.15407/ubj92.03.006

COVID-19 infection: disease mechanism, vascular dysfunction, immune responses, markers, multiorgan failure, treatments, and vaccination

Vari S. G.

International Research and Innovation in Medicine Program Cedars-Sinai Medical Center,  Los Angeles, CA, USA;
e-mail: vari@cshs.org

The new SARS-CoV-2 virus is a great danger for the worldwide population since there is no known pre-immunity, no specific treatment, and no vaccine. Still, the testing and tracing are the best tools to isolate the infected and prevent the spread of COVID-19. The major goals are to save lives, reduce the mortality rate, increase the survival rate of those are in severe or critical conditions, reduce the hospital stay and accelera­te the recovery. This review summarizes the findings on the novel coronavirus that causes COVID-19 and outlines information about symptoms, testing, disease mechanism, vascular dysfunction, immune responses, treatments, and vaccination. At this time no vaccine is available to prevent COVID-19. A literature review reveals  that more research is necessary to investigate the interactions between respiratory viruses, human coronaviruses, and the new SARS-CoV-2 virus in the infected population to guide the design of COVID-19 specific therapeutics and vaccines. Almost every government on earth has realized that  daily life cannot return to normal until citizens have built up antibodies to safeguard them from the virus. Scientists and manufacturers worldwide are accelerating COVID-19 vaccine research, and pharmaceutical companies are already investing in the large-scale production of vaccines. A synopsis of the most recent sources presented in this review was the starting point for several COVID-19 research projects in the Regional Cooperation for Health, Science and Technology (RECOOP HST) Association managed by Cedars – Sinai Medical Center to gain a better understanding of the COVID-19 disease.

Keywords: , , , , , , , , ,


References:

  1. Lapointe-Shaw L, Rader B, Astley CM, Hawkins JB, Bhatia D, Schatten WJ, Lee TC, Liu JJ, Ivers NM, Stall NM, Gournis E, Tuite AR, Fisman DN, Bogoch II, Brownstein JS. Syndromic Surveillance for COVID-19 in Canada. 2020.  Available from : https://doi.org/10.1101/2020.05.19.20107391. CrossRef
  2. WHO Coronavirus Disease (COVID-19) Dashboard. Covid19.who.int. 2020. [accessed 6 Aug 2020] Available from: https://covid19.who.int/?gclid=CjwKCAjwsan5BRAOEiwALzomXzz0vRVCZlHgJsmoxG6p_DfqTxR-6sNm8yGkGQfcV4vocElSL5bGVRoCdr0QAvD_BwE
  3. Hui DSC,  Zumla  A. Severe Acute Respiratory Syndrome: Historical, Epidemiologic, and Clinical Features. Infect Dis Clin North Am. 2019;33(4):869-889. PubMed, PubMedCentral, CrossRef
  4. Assessing Risk Factors for Severe COVID-19 Illness CDC. Coronavirus Disease 2019 (COVID-19). Centers for Disease Control and Prevention. 2020. [accessed 6 Aug 2020] Available from: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/assessing-risk-factors.html
  5. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B.  Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. PubMed, PubMedCentral, CrossRef
  6. La Vignera S, Cannarella R, Condorelli RA, Torre F, Aversa A, Calogero AE. Sex-Specific SARS-CoV-2 Mortality: Among Hormone-Modulated ACE2 Expression, Risk of Venous Thromboembolism and Hypovitaminosis D. Int J Mol Sci. 2020;21(8):2948. PubMed, PubMedCentral, CrossRef
  7. Sharma G, Volgman AS, Michos ED. Sex Differences in Mortality from COVID-19 Pandemic: Are Men Vulnerable and Women Protected? JACC Case Rep. 2020;2(9):1407-1410. PubMed, PubMedCentral, CrossRef
  8. Steenblock C, Todorov V, Kanczkowski W, Eisenhofer G, Schedl A, Wong ML, Licinio J, Bauer M, Young AH, Gainetdinov RR,  Bornstein SR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the neuroendocrine stress axis. Mol Psychiatry. 2020;25(8):1611-1617. PubMed, PubMedCentral, CrossRef
  9. Patel R, Babady E, Theel ES, Storch GA, Pinsky BA, George KSt, Smith TC, Bertuzzi S. Report from the American Society for Microbiology COVID-19 International Summit, 23 March 2020: Value of Diagnostic Testing for SARS-CoV-2/COVID-19. mBio. 2020;11(2):e00722-20. PubMed, PubMedCentral, CrossRef
  10. Coronavirus Disease 2019 (COVID-19). Centers for Disease Control and Prevention. 2020. [accessed 6 Aug 2020] Available from: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/testing.html.
  11. Almeida J. June Almeida (née Hart). BMJ. 2008;336(7659):1511.  CrossRef
  12. Tyrrell DA, Bynoe ML. Cultivation of a Novel Type of Common-cold Virus in Organ Cultures. BMJ. 1965;1(5448):1467-1470.    PubMed, PubMedCentral, CrossRef
  13. Almeida JD, Tyrrell DA. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J Gen Virol. 1967;1(2):175-178. PubMed, CrossRef
  14. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91-98. PubMed, PubMedCentral, CrossRef
  15. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181-192. PubMed, PubMedCentral, CrossRef
  16. Wang L, Wang Y, Ye D, Liu Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int J Antimicrob Agents. 2020;55(6):105948. PubMed, PubMedCentral, CrossRef
  17. Luan J, Lu Y, Gao S, Zhang L. A potential inhibitory role for integrin in the receptor targeting of SARS-CoV-2. J Infect. 2020;81(2):318-356. PubMed, PubMedCentral, CrossRef
  18. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. PubMed, PubMedCentral, CrossRef
  19. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-454. PubMed, PubMedCentral, CrossRef
  20. Flammer AJ, Anderson T, Celermajer DS, Creager MA, Deanfield J, Ganz P, Hamburg NM, Lüscher TF, Shechter M, Taddei S, Vita JA, Lerman A.  The assessment of endothelial function: from research into clinical practice. Circulation. 2012;126(6):753-767. PubMed, PubMedCentral, CrossRef
  21.  Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23(2):168-175. PubMed, CrossRef
  22. Varga Z, FlammerAJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-1418. PubMed, PubMedCentral, CrossRef
  23. Förstermann U, Münzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113(13):1708-1714. PubMed, CrossRef
  24. Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, Su X, Cao B. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020;395(10235):1517-1520. PubMed, PubMedCentral, CrossRef
  25. Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, Clark C, Iba T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023-1026. PubMed, CrossRef
  26. Oudkerk M, Büller HR, Kuijpers D, van Es N, Oudkerk SF, McLoud TC, Gommers D, van Dissel J, Ten Cate H, van Beek  EJ. Diagnosis, Prevention, and Treatment of Thromboembolic Complications in COVID-19: Report of the National Institute for Public Health of the Netherlands. Radiology. 2020;201629. PubMed, PubMedCentral, CrossRef
  27. Tripodi A. D-dimer testing in laboratory practice. Clin Chem. 2011;57(9):1256-1262. PubMed, CrossRef
  28. Bellart J, Gilabert R, Anglès A, Piera V, Miralles RM, Monasterio J, Cabero L. Tissue factor levels and high ratio of fibrinopeptide A:D-dimer as a measure of endothelial procoagulant disorder in pre-eclampsia. Br J Obstet Gynaecol. 1999;106(6):594-597. PubMed, CrossRef
  29. Stefan N, Birkenfeld AL, Schulze MB, Ludwig DS. Obesity and impaired metabolic health in patients with COVID-19. Nat Rev Endocrinol. 2020;16(7):341-342. PubMed, PubMedCentral, CrossRef,
  30. Ryan DH, Ravussin E, Heymsfield S. COVID 19 and the Patient with Obesity – The Editors Speak Out. Obesity (Silver Spring). 2020;28(5):847. PubMed, PubMedCentral, CrossRef
  31. Sattar N, McInnes IB, McMurray JJV. Obesity Is a Risk Factor for Severe COVID-19 Infection: Multiple Potential Mechanisms. Circulation. 2020;142(1):4-6. PubMed, CrossRef
  32. Malavazos AE, Corsi Romanelli MM, Bandera F, Iacobellis G. Targeting the Adipose Tissue in COVID-19. Obesity (Silver Spring). 2020;28(7):1178-1179. PubMed, PubMedCentral, CrossRef
  33. Kass DA, Duggal P, Cingolani O. Obesity could shift severe COVID-19 disease to younger ages. Lancet. 2020;395(10236):1544-1545. PubMed, PubMedCentral, CrossRef
  34. Francisco V, Pino J, Campos-Cabaleiro V, Ruiz-Fernández C, Mera A, Gonzalez-Gay MA, Gómez R, Gualillo O. Obesity, Fat Mass and Immune System: Role for Leptin. Front Physiol. 2018;9:640. PubMed, PubMedCentral, CrossRef
  35. Ellul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A, Kneen R, Defres S, Sejvar J, Solomon T. Neurological associations of COVID-19. Lancet Neurol. 2020;S1474-4422(20)30221-0. PubMed, PubMedCentral, CrossRef
  36. Abdelnour L, Abdalla ME, Babiker S. COVID 19 infection presenting as motor peripheral neuropathy. J Formos Med Assoc. 2020;119(6):1119-1120. PubMed, PubMedCentral, CrossRef
  37. Bhaskar  S, Bradley S, Israeli-Korn S, Menon B, Chattu VK, Thomas P, Chawla J, Kumar R, Prandi P, Ray D, Golla S, Surya N, Yang H, Martinez S, Ozgen MH, Codrington J, Jiménez González EM, Toosi M, Mohan NH, Menon KV, Chahidi A, Hengstl SM. Chronic Neurology in COVID-19 Era: Clinical Considerations and Recommendations From the REPROGRAM Consortium. Front Neurol. 2020;11:664. PubMed, PubMedCentral, CrossRef
  38. Fenrich M, Mrdenovic S, Balog M, Tomic S, Zjalic M, Roncevic A, Mandic D, Debeljak Z, Heffer M. SARS-CoV-2 DisseminationThrough Peripheral Nerves ExplainsMultiple Organ Injury. Front Cell Neurosci. 2020;14:229. CrossRef
  39. Spada C, Spera G, Riccioni M, Biancone L, Petruzziello L, Tringali A, Familiari P, Marchese M, Onder G, Mutignani M, Perri V, Petruzziello C, Pallone F, Costamagna G.A novel diagnostic tool for detecting functional patency of the small bowel: the Given patency capsule. Endoscopy. 2005;37(9):793-800. PubMed, CrossRef
  40. Krstic SN, Martinov JB, Sokic-Milutinovic AD, Milosavljevic TN, Krstic MN. Capsule endoscopy is useful diagnostic tool for diagnosing Meckel’s diverticulum. Eur J Gastroenterol Hepatol. 2016;28(6):702-707. PubMed, CrossRef
  41. Chakraborty R, Parvez S. COVID-19: An overview of the current pharmacological interventions, vaccines, and clinical trials. Biochem Pharmacol. 2020;114184. PubMed, PubMedCentral, CrossRef
  42. Files.covid19treatmentguidelines.nih.gov. 2020. [accessed 6 Aug 2020] Available from: https://files.covid19treatmentguidelines.nih.gov/guidelines/covid19treatmentguidelines.pdf.
  43. Buckland BC. The process development challenge for a new vaccine. Nat Med. 2005;11(S4):S16-S19. CrossRef
  44. Chowdhury R, Islam R, Sharma HK. Development of Vaccine Against SARS-CoV-2: An Updated Review. Curr Trends Pharm Res. 2020; 7(1): 90-105.
  45. Glossary. Covid-19tracker.milkeninstitute.org. 2020. [accessed 6 Aug 2020] Available from: https://covid-19tracker.milkeninstitute.org/glossary
  46. Draft landscape of COVID-19 candidate vaccines. WHO.INT. 2020. [accessed 6 Aug 2020] Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
  47. Meckiff BJ, Ramírez-Suástegui C, Fajardo V, Chee SJ, Kusnadi A, Simon H, Grifoni A, Pelosi E, Weiskopf D, Sette A, Ay F, Grégory Seumois, Ottensmeier CH, Vijayanand P. Single-cell transcriptomic analysis of SARS-CoV-2 reactive CD4+ T cells. Available at SSRN: https://ssrn.com/abstract=3641939 or http://dx.doi.org/10.2139/ssrn.3641939.
  48. Kate MacDonald The Immune Response, July 23, 2019 https://letstalkscience.ca/educational-resources/stem-in-context/immune-response
  49. Sette A, Crotty S. Pre-existing immunity to SARS-CoV-2: the knowns and unknowns. Nat Rev Immunol. 2020;20(8):457-458.  PubMed, PubMedCentral, CrossRef
  50. Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM,  Burger ZC, Rawlings SA, Smith DM, Phillips E, Mallal S, Lammers M, Rubiro P, Quiambao L, Sutherland A, Yu ED,  da Silva Antunes R, Greenbaum J, Frazier A, Markmann AJ, Premkumar L, de Silva A, Peters B, Crotty S, Sette A,  Weiskopf D. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science. 2020: eabd3871. CrossRef
  51. Nickbakhsh S, Ho A, Marques DFP, McMenamin J, Gunson RN, Murcia PR. Epidemiology of Seasonal Coronaviruses: Establishing the Context for the Emergence of Coronavirus Disease 2019. J Infect Dis. 2020;222(1):17-25. PubMed, PubMedCentral, CrossRef
  52. Chen Z, Wherry EJ. T cell responses in patients with COVID-19. Nat Rev Immunol. 2020;1-8. PubMed, PubMedCentral, CrossRef
  53. Meckiff, Benjamin J et al. “Single-cell transcriptomic analysis of SARS-CoV-2 reactive CD4+T cells.” bioRxiv : the preprint server for biology 2020.06.12.148916. 13 Jun. 2020, doi:10.1101/2020.06.12.148916.  Preprint.
  54. Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, Chng MHY, Lin M, Tan N, Linster M, Chia WN, Chen MI, Wang LF, Ooi EE, Kalimuddin S, Tambyah PA, Low  JGH, Tan YJ,  Bertoletti A. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020 Jul 15. PubMed, CrossRef
  55. Magar R, Yadav P, Farimani AB. Potential Neutralizing Antibodies Discovered for Novel Corona Virus Using Machine Learning. bioRxiv 2020.03.14.992156.    CrossRef
  56. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006; 124(4):783–801.  PubMed, CrossRef
  57. Nanni L. Machine learning algorithms for T-cell epitopes prediction. Neurocomputing. 2006;69(7-9):866–868. CrossRef
  58. Baruah V, Bose S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J Med Virol. 2020;92(5):495-500. PubMed, PubMedCentral, CrossRef
  59. Martin TR, Wurfel MM, Zanoni I, Ulevitch R. Targeting innate immunity by blocking CD14: Novel approach to control inflammation and organ dysfunction in COVID-19 illness. EBioMedicine. 2020;57:102836.  PubMed, PubMedCentral
  60. Noorimotlagh Z, Karami C, Mirzaee SA,  Kaffashian M, Mami S, Azizi M. Immune and bioinformatics identification of T cell and B cell epitopes in the protein structure of SARS-CoV-2: A systematic review. Int Immunopharmacol. 2020;86:106738. PubMed, PubMedCentral, CrossRef
  61. Netea MG, van der Meer JWM. Trained Immunity: An Ancient Way of Remembering. Cell Host Microbe. 2017;21(3):297-300. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.