Ukr.Biochem.J. 2020; Volume 92, Issue 6, Nov-Dec, pp. 113-118
doi: https://doi.org/10.15407/ubj92.06.113
Activation of the PI3K/AKT/MTOR/P70S6K1 signaling cascade in peripheral blood mononuclear cells in patients with type 2 diabetes
T. S. Vatseba1*, L. K. Sokolova2, V. M. Pushkarev2,
O. I. Kovzun2, B. B. Guda2, V. V. Pushkarev2,
M. D. Tronko2, N. V. Skrypnyk1, L. M. Zaiats1
1Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine;
2SI “V.P. Komisarenko Institute of Endocrinology and Metabolism of NAMS of Ukraine”, Kyiv;
*e-mail: tamara.vatseba@gmail.com
Received: 17 April 2020; Accepted: 13 November 2020
Modern research shows that patients with diabetes mellitus have an increased risk of cancer. PI3K/Akt/mTOR/p70S6K1 signaling pathway plays an important role in the pathogenesis of cancer and diabetes. The aim of this study was to determine the state of РІ3K/Akt/mTORC1/p70S6K signaling cascade activity in peripheral mononuclear blood cells (PBMC) of patients with type 2 diabetes (T2D) relatively to the insulin and insulin-like growth factor (IGF-1) concentrations in blood plasma. Enzyme-linked immunosorbent assay was used to examine the levels of insulin and IGF-1 in blood plasma as well as the content of phosphorylated forms of Akt (Ser473), PRAS40 (Thr246), and p70S6K (Thr389) in PMBC. It was shown that in the blood plasma of patients with T2D the levels of insulin and IGF-1 were increased. Phosphorylation and activation of Akt by the mTORC2 protein kinase complex was not observed. At the same time, the relative degree of phosphorylation of mTORC1 inhibitor, PRAS40, and its substrate, p70S6K, was higher in PMBC of T2D patients in comparison with control values. These data suggest that phosphoinositide-dependent protein kinase 1 (PDK1) and, possibly, mitogen-activated protein kinase (MAPK) could mediate the effects of IGF-1 on Akt activation under type 2 diabetes.
Keywords: Akt, insulin, insulin-like growth factor, p70S6K, peripheral blood mononuclear cells, PRAS40, type 2 diabetes
References:
- Vatseba TS. Cancer of the organs of the reproductive system in women with type 2 diabetes. Effects of antidiabetic therapy. Wiad Lek. 2020;73(5):967-971. PubMed, CrossRef
- Harding JL, Shaw JE, Peeters A, Cartensen B, Magliano DJ. Cancer risk among people with type 1 and type 2 diabetes: disentangling true associations, detection bias, and reverse causation. Diabetes Care. 2015;38(2):264-270. PubMed, CrossRef
- Jhanwar-Uniyal M, Amin AG, Cooper JB, Das K, Schmidt MH, Murali R. Discrete signaling mechanisms of mTORC1 and mTORC2: Connected yet apart in cellular and molecular aspects. Adv Biol Regul. 2017;64:39-48. PubMed, CrossRef
- Manning BD, Toker A. AKT/PKB Signaling: Navigating the Network. Cell. 2017;169(3):381-405. PubMed, PubMedCentral, CrossRef
- Dituri F, Mazzocca A, Giannelli G, Antonaci S. PI3K functions in cancer progression, anticancer immunity and immune evasion by tumors. Clin Dev Immunol. 2011;2011:947858. PubMed, PubMedCentral, CrossRef
- Tronko ND, Pushkarev VM, Sokolova LK, Pushkarev VV, Kovzun EI. Molecular mechanisms of the pathogenesis of diabetes mellitus and its complications. K.: Publishing house “Medkniga”. 2018, 264 p. (In Russian).
- Alderete TL, Byrd-Williams CE, Toledo-Corral CM, Conti DV, Weigensberg MJ, Goran MI. Relationships between IGF-1 and IGFBP-1 and adiposity in obese African-American and Latino adolescents. Obesity (Silver Spring). 2011;19(5):933-938. PubMed, PubMedCentral, CrossRef
- Pushkarev VM, Sokolova LK, Pushkarev VV, Tronko MD. Biochemical mechanisms connecting diabetes and cancer. Effect of metformin. Endokrynologia. 2018; 23(2):167-179. (In Ukrainian).
- Semple RK. EJE PRIZE 2015: How does insulin resistance arise, and how does it cause disease? Human genetic lessons. Eur J Endocrinol. 2016;174(5):R209-R223. PubMed, CrossRef
- Gristina V, Cupri MG, Torchio M, Mezzogori C, Cacciabue L, Danova M. Diabetes and cancer: A critical appraisal of the pathogenetic and therapeutic links. Biomed Rep. 2015;3(2):131-136. PubMed, PubMedCentral, CrossRef
- Ong PS, Wang LZ, Dai X, Tseng SH, Loo SJ, Sethi G. Judicious Toggling of mTOR Activity to Combat Insulin Resistance and Cancer: Current Evidence and Perspectives. Front Pharmacol. 2016;7:395. PubMed, PubMedCentral, CrossRef
- Vadlakonda L, Dash A, Pasupuleti M, Kumar KA, Reddanna P. The Paradox of Akt-mTOR Interactions. Front Oncol. 2013;3:165. PubMed, PubMedCentral, CrossRef
- Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 2008;27(14):1919-1931. PubMed, PubMedCentral, CrossRef
- Breuleux M, Klopfenstein M, Stephan C, Doughty CA, Barys L, Maira SM, Kwiatkowski D, Lane HA. Increased AKT S473 phosphorylation after mTORC1 inhibition is rictor dependent and does not predict tumor cell response to PI3K/mTOR inhibition. Mol Cancer Ther. 2009;8(4):742-753. PubMed, PubMedCentral, CrossRef
- Pushkarev VM, Sokolova LK, Pushkarev VV, Tronko MD. The role of AMPK and mTOR in the development of insulin resistance and type 2 diabetes. The mechanism of metformin action (literature review). Probl Endocrin Pathol. 2016;(3):77-90. (In Russian).
- Lv D, Guo L, Zhang T, Huang L. PRAS40 signaling in tumor. Oncotarget. 2017;8(40):69076-69085. PubMed, PubMedCentral, CrossRef
- Wang H, Zhang Q, Wen Q, Zheng Y, Lazarovici P, Jiang H, Lin J, Zheng W. Proline-rich Akt substrate of 40kDa (PRAS40): a novel downstream target of PI3k/Akt signaling pathway. Cell Signal. 2012;24(1):17-24. PubMed, CrossRef
- Wiza C, Chadt A, Blumensatt M, Kanzleiter T, Herzfeld De Wiza D, Horrighs A, Mueller H, Nascimento EB, Schürmann A, Al-Hasani H, Ouwens DM. Over-expression of PRAS40 enhances insulin sensitivity in skeletal muscle. Arch Physiol Biochem. 2014;120(2):64-72. PubMed, CrossRef
- Yoon MS. The role of mammalian target of rapamycin (mTOR) in insulin signaling. Nutrients. 2017;9(11):1176. PubMed, PubMedCentral, CrossRef
- Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017;168(6):960-976. PubMed, PubMedCentral, CrossRef
- Julien LA, Carriere A, Moreau J, Roux PP. mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol. 2010;30(4):908-921. PubMed, PubMedCentral, CrossRef
- Rad E, Murray JT, Tee AR.Oncogenic Signalling through Mechanistic Target of Rapamycin (mTOR): A Driver of Metabolic Transformation and Cancer Progression. Cancers (Basel). 2018;10(1):5. PubMed, PubMedCentral, CrossRef
- Sourris KC, Lyons JG, de Courten MP, Dougherty SL, Henstridge DC, Cooper ME, Hage M, Dart A, Kingwell BA, Forbes JM, de Courten B. c-Jun NH2-terminal kinase activity in subcutaneous adipose tissue but not nuclear factor-kappaB activity in peripheral blood mononuclear cells is an independent determinant of insulin resistance in healthy individuals. Diabetes. 2009;58(6):1259-1265. PubMed, PubMedCentral, CrossRef
