Ukr.Biochem.J. 2020; Volume 92, Issue 6, Nov-Dec, pp. 154-164


Exometabolites of endospore-forming bacteria of Bacillus genus identified by genomic-metabolomic profiling

А. M. Ostapchuk, М. D. Shtenikov*, V. О. Ivanytsia

Odesa I. I. Mechnykov National University, Ukraine;

Received: 30 March 2020; Accepted: 13 November 2020

The set of unique bioactive metabolites produced by marine bacilli is already known but the metabolomic of these bacteria  is underinvestigated. The aim of this work was to carry out  the comparative analysis of metabolomic and genomic traits of Bacillus velezensis ONU 553, Bacillus pumilus ONU 554, Bacillus subtilis ONU 559 strains isolated from Black Sea bottom sediments. Organic extracts of each strain were analyzed using high-resolution liquid chromatography-mass spectrometry. General annotation of genomes was performed using PATRIC, search for secretory signals in the primary structure of selected proteins with using Signal IP analysis.  The search of biosynthetic gene clusters was performed using antiSMASH, PRISM 3 and BiG-SCAPEs, the reconstruction of metabolites- with PRISM 3 and TransATor analyzes. The study allowed to found and identified 90, 33 and 43 metabolites in the strains Bacillus velezensis ONU 553, Bacillus pumilus ONU 554 and  Bacillus subtilis ONU 559 respectively. The compounds found in metabolome were subdivided into two groups: those which are known members of the genus Bacillus and those new to both genus and prokaryotes in general. Among the secondary metabolites of studied strains the variants of the nonribosomal peptide class  surfactins (anhteisoC16-surfactin, surfactin B2-me ester), gageostatins, fengycins and amicoumacins, and the secreted protease inhibiting pentapeptide GPFPI were identified. The biosynthetic clusters of lipopeptides of the pumilacidin subgroup and amicoumacin antibiotic AI-77A were identified for the first time with the use of  bioinformatic tools. The data obtained replenish the  understanding of the marine bacilli biosynthetic potential.

Keywords: , , , ,


  1. Mandic-Mulec I, Stefanic P, van Elsas JD. Ecology of Bacillaceae. Microbiol Spectr. 2015;3(2):TBS-0017-2013. PubMed, CrossRef
  2. Zhao X, Kuipers OP. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics. 2016;17(1):882. PubMed, PubMedCentral, CrossRef
  3. Tiam SK, Gugger M, Demay J, Le Manach S, Duval C, Bernard C, Marie B. Insights into the Diversity of Secondary Metabolites of Planktothrix Using a Biphasic Approach Combining Global Genomics and Metabolomics. Toxins (Basel). 2019;11(9):498. PubMed, PubMedCentral, CrossRef
  4. Kaspar F, Neubauer P, Gimpel M. Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review. J Nat Prod. 2019;82(7):2038-2053. PubMed, CrossRef
  5. Tyurin AP, Efimenko TA, Prokhorenko IA, Rogozhin EA,  Malanicheva IA, Zenkova VA, Efremenkova OV, Korshun VA. Chapter 12 – Amicoumacins and Related Compounds: Chemistry and Biology. Stud Nat Prod Chem. 2018;55:385-441.  CrossRef
  6. Cochrane SA, Vederas JC. Lipopeptides from Bacillus and Paenibacillus spp.: A Gold Mine of Antibiotic Candidates. Med Res Rev. 2016;36(1):4-31. PubMed, CrossRef
  7. Wenzel SC, Meiser P, Binz TM, Mahmud T, Müller R. Nonribosomal peptide biosynthesis: point mutations and module skipping lead to chemical diversity. Angew Chem Int Ed Engl. 2006;45(14):2296-2301. PubMed, CrossRef
  8. Helfrich EJN, Ueoka R, Dolev A, Rust M, Meoded RA, Bhushan A, Gianmaria C, Costa R, Gugger M, Steinbeck C, Moreno P, Piel J. Automated structure prediction of trans-acyltransferase polyketide synthase products.Nat Chem Biol. 2019;15(8):813-821. PubMed, PubMedCentral, CrossRef
  9. Ma Z, Hu J. Complete genome sequence of a marine-sediment-derived bacterial strain Bacillus velezensis SH-B74, a cyclic lipopeptides producer and a biopesticide. 3 Biotech. 2019;9(4):162. PubMed, PubMedCentral, CrossRef
  10. Ivanytsia VО, Shtenikov MD, Ostapchuk АМ. Facultatively anaerobic sporeforming bacteria of deep sea sediments of the Black sea. Microbiol Biotechnol. 2017;(4(40)):94-103. (In Ukrainian). CrossRef
  11. Paulus C, Rebets Y, Tokovenko B, Nadmid S, Terekhova LP, Myronovskyi M, Zotchev SB, Rückert C, Braig S, Zahler S, Kalinowski J, Luzhetskyy A. New natural products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. MP131-18. Sci Rep. 2017;7:42382. PubMed, PubMedCentral, CrossRef
  12. De S, Kaur G, Roy A, Dogra G, Kaushik R, Yadav P, Singh R, Datta TK, Goswami SL. A Simple Method for the Efficient Isolation of Genomic DNA from Lactobacilli Isolated from Traditional Indian Fermented Milk (dahi). Indian J Microbiol. 2010;50(4):412-418. PubMed, PubMedCentral, CrossRef
  13. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10(1):2182. PubMed, PubMedCentral, CrossRef
  14. Wattam AR, Brettin T, Davis JJ, Gerdes S, Kenyon R, Machi D, Mao C, Olson R, Overbeek R, Pusch GD, Shukla MP, Stevens R, Vonstein V, Warren A, Xia F, Yoo H. Assembly, Annotation, and Comparative Genomics in PATRIC, the All Bacterial Bioinformatics Resource Center. Methods Mol Biol. 2018;1704:79-101. PubMed, CrossRef
  15. Armenteros JJA, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37(4):420-423.  PubMed, CrossRef
  16. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47(W1):W81-W87.  PubMed, PubMedCentral, CrossRef
  17. Skinnider MA, Merwin NJ, Johnston CW, Magarvey NA. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res. 2017;45(W1):W49-W54. PubMed, PubMedCentral, CrossRef
  18. Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH, Parkinson EI, De Los Santos ELC, Yeong M, Cruz-Morales P, Abubucker S, Roeters A, Lokhorst W, Fernandez-Guerra A, Cappelini LTD, Goering AW, Thomson RJ, Metcalf WW, Kelleher NL, Barona-Gomez F, Medema MH. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol. 2020;16(1):60-68. PubMed, PubMedCentral, CrossRef
  19. Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR, van der Hooft JJJ, van Santen JA, Tracanna V, Suarez Duran HG, Andreu VP, Selem-Mojica N, Alanjary M , Robinson SL, Lund G, Epstein SC, Sisto AC, Charkoudian LK, Collemare J, Linington RG, Weber T, Medema MH. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 2020;48(D1):D454-D458. PubMed, PubMedCentral, CrossRef
  20. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009-1010. PubMed, PubMedCentral, CrossRef
  21. Fan B, Wang C, Song X, Ding X, Wu L, Wu H, Gao X, Borriss R. Bacillus velezensis FZB42 in 2018: The Gram-Positive Model Strain for Plant Growth Promotion and Biocontrol. Front Microbiol. 2018;9:2491. PubMed, PubMedCentral, CrossRef
  22. Patel H, Tscheka C, Edwards K, Karlsson G, Heerklotz H. All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713. Biochim Biophys Acta. 2011;1808(8):2000-2008. PubMed, CrossRef
  23. Nishikiori T, Naganawa H, Muraoka Y, Aoyagi T, Umezawa H. Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. III. Structural elucidation of plipastatins. J Antibiot (Tokyo). 1986;39(6):755-761.  PubMed, CrossRef
  24. Honma M, Tanaka K, Konno K, Tsuge K, Okuno T, Hashimoto M. Termination of the structural confusion between plipastatin A1 and fengycin IX. Bioorg Med Chem. 2012;20(12):3793-3798. PubMed, CrossRef
  25. Balunas M. Natural products as aromatase inhibitors: Identification and structure-activity aspects J.University of Illinois at Chicago, ProQuest Dissertations Publishing, 2007. 3345547.
  26. Tareq FS, Lee MA, Lee HS, Lee JS, Lee YJ, Shin HJ. Gageostatins A-C, antimicrobial linear lipopeptides from a marine Bacillus subtilis. Mar Drug. 2014;12(2):871-885. PubMed, PubMedCentral, CrossRef
  27. Nagamori Y, Kusaka K, Nishimura T, Okada S. Isolation and Characterization of a Bacterial Dipeptidyl Carboxypeptidase Inhibitor from Bacillus subtilis 3-16-20. J Fermentat Bioeng. 1992;73(4):277-279.  CrossRef
  28. Berrue F, Ibrahim A, Boland P, Kerr RG. Newly isolated marine Bacillus pumilus (SP21): A source of novel lipoamides and other antimicrobial agents. Pure Appl Chem. 2009; 81(6): 1027-1031. CrossRef
  29. Hayashi H, Shimojima Y, Shirai T, Ishida T, Shibukawa M. AI-77 compounds and pharmaceutically acceptable salts thereof. U.S. Patent No. 4,393,225. 1983.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.