Ukr.Biochem.J. 2020; Volume 92, Issue 6, Nov-Dec, pp. 53-62

doi: https://doi.org/10.15407/ubj92.06.053

The replicative CMG helicase: the ideal target for cancer therapy

W. Henderson, K. Nyman, M. Stoney, S. I. Borysov*

College of Arts and Sciences, Saint Leo University, St. Leo, Florida, USA;
*e-mail: Sergiy.Borysov@saintleo.edu

Received: 31 May 2020; Accepted:13 November 2020

This review focuses on Cdc45-Mcm2-7-GINS (CMG) helicase which is a key component of the cellular replication machinery and a new promising  target for cancer therapy. In normal cells, only a small proportion of helicases becomes activated through the step-wise acquisition of all necessary subunits during genome replication and a large quantity of reserve dormant helicases exist to replace inhibited helicases, making the normal cells insensitive to helicase inhibition. The collective evidence in the field shows that in contrast to normal cells, cancer cells have a significantly reduced pool of dormant helicases and might be vulnerable to CMG helicase inhibitors. Functional studies confirm that targeted inhibition of CMG helicase could be a strong and specific anticancer approach that ensures efficiency against a broad spectrum of cancers and limited adverse effects on normal cells. We anticipate that therapeutics that inhibit CMG helicase can be used not only as a stand-alone therapy but also as effective chemosensitizers in combination with other drugs, thus increasing their clinical application.

Keywords: , , , ,


References:

  1. Cancer statistics. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/cancer (accessed, May, 2020).
  2. Worldwide cancer statistics. Cancer Research UK. 2015; https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer (accessed, May, 2020).
  3. Global cancer facts & figures. American Cancer Society. https://www.cancer.org/research/cancer-facts-statistics/global.html (accessed, May, 2020).
  4. Stewart BW and Wild CW. World cancer report. 2014; Lyon: IARC Press.
  5. The global cancer burden. American Cancer Society. https://www.cancer.org/health-care-professionals/our-global-health-work/global-cancer-burden.html (accessed, May, 2020).
  6. Cancer Treatments, 2019; Cancer Quest http://www.cancerquest.org/patients/treatments (accessed, October, 2019).
  7. Radiation therapy. National Cancer Institute. 2015 https://www.cancer.gov/about-cancer/treatment/types/radation-therapy (accessed, September, 2019).
  8. Chemotherapy. Cancer Quest. https://www.cancerquest.org/patients/treatments/chemotherapy (accessed, September, 2019).
  9. How chemotherapy works. Cancer Research UK. https://www.cancerresearchuk.org/about-cancer/cancer-in-general/treatment/chemotherapy/how-chemotherapy-works (accessed, September, 2019).
  10. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016;14(1):73.  PubMed, PubMedCentral, CrossRef
  11. Siddiqui K, On KF, Diffley JFX. Regulating DNA replication in eukarya. Cold Spring Harb Perspect Biol. 2013;5(9):a012930. PubMed, PubMedCentral, CrossRef
  12. Puigvert JC, Sanjiv K, Helleday T. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J. 2016;283(2):232-245. PubMed, CrossRef
  13. Bochman ML. Roles of DNA helicases in the maintenance of genome integrity. Mol Cell Oncol. 2014;1(3):e963429.  PubMed, PubMedCentral, CrossRef
  14. Maine GT, Sinha P, Tye BK. Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics. 1984;106(3):365-385.
    PubMed, PubMedCentral
  15. Gómez EB, Catlett MG, Forsburg SL. Different phenotypes in vivo are associated with ATPase motif mutations in Schizosaccharomyces pombe minichromosome maintenance proteins. Genetics. 2002;160(4):1305-1318. PubMed, PubMedCentral
  16. Davey MJ, Indiani C, O’Donnell M. Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture. J Biol Chem. 2003;278(7):4491-4499. PubMed, CrossRef
  17. Miller JM, Arachea BT, Epling LB, Enemark EJ. Analysis of the crystal structure of an active MCM hexamer. Elife. 2014;3:e03433. PubMed, PubMedCentral, CrossRef
  18. Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell. 2010;37(2):247-258. PubMed, PubMedCentral, CrossRef
  19. Kang YH, Galal WC, Farina A, Tappin I, Hurwitz J. Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis. Proc Natl Acad Sci USA. 2012;109(16):6042-6047. PubMed, PubMedCentral, CrossRef
  20. Aladjem MI. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet. 2007;8(8):588-600. PubMed, CrossRef
  21. Jatikusumo VA. Treslin and its role in the assembly of the replicative DNA helicase (Doctoral thesis). University of Cambridge. 2020. https://doi.org/10.17863/CAM.48462.
  22.  Wong PG, Winter SL, Zaika E, Cao TV, Oguz U, Koomen JM, Hamlin JL, Alexandrow MG. Cdc45 limits replicon usage from a low density of preRCs in mammalian cells. PLoS One. 2011;6(3):e17533. PubMed, PubMedCentral, CrossRef
  23. Pollok S, Bauerschmidt C, Sänger J, Nasheuer HP, Grosse F. Human Cdc45 is a proliferation-associated antigen. FEBS J. 2007;274(14):3669-3684. PubMed, CrossRef
  24. Kamada K. The GINS complex: structure and function. Subcell Biochem. 2012;62:135-156. PubMed, CrossRef
  25. Chang YP, Wang  G, Bermudez V, Hurwitz J, Chen XS. Crystal structure of the GINS complex and functional insights into its role in DNA replication. Proc Natl Acad Sci USA. 2007;104(31):12685-12690. PubMed, PubMedCentral, CrossRef
  26. Kamada K, Kubota Y, Arata T, Shindo Y, Hanaoka F. Structure of the human GINS complex and its assembly and functional interface in replication initiation. Nat Struct Mol Biol. 2007;14(5):388-396. PubMed, CrossRef
  27. Choi JM, Lim HL, Kim JJ, Song OK, Cho Y. Crystal structure of the human GINS complex. Genes Dev. 2007;21(11):1316-1321. PubMed, PubMedCentral, CrossRef
  28. Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H.  GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 2003;17(9):1153-1165. PubMed, PubMedCentral, CrossRef
  29. Boskovic J, Coloma J, Aparicio T, Zhou M, Robinson CV, Méndez J, Montoya G. Molecular architecture of the human GINS complex. EMBO Rep. 2007;8(7):678-684. PubMed, PubMedCentral, CrossRef
  30. MacNeill SA. Structure and function of the GINS complex, a key component of the eukaryotic replisome. Biochem J. 2010;425(3):489-500. PubMed, CrossRef
  31. Makarova KS, Koonin EV, Kelman Z. The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes. Biol Direct. 2012;7:7. PubMed, PubMedCentral, CrossRef
  32. Noguchi Y, Yuan Z, Bai L , Schneider S, Zhao G, Stillman B, Speck C, Li H. Cryo-EM structure of Mcm2-7 double hexamer on DNA suggests a lagging-strand DNA extrusion model. Proc Natl Acad Sci USA. 2017;114(45):E9529-E9538. PubMed, PubMedCentral, CrossRef
  33. Yuan Z, Bai L, Sun J, Georgescu R, Liu J, O’Donnell ME, Li H. Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat Struct Mol Biol. 2016;23(3):217-224. PubMed, PubMedCentral, CrossRef
  34. Langston L, O’Donnell M. Action of CMG with strand-specific DNA blocks supports an internal unwinding mode for the eukaryotic replicative helicase. Elife. 2017;6:e23449. PubMed, PubMedCentral, CrossRef
  35. Georgescu R, Yuan Z, Bai L, de Luna Almeida Santos R, Sun J, Zhang D, Yurieva O, Li H, O’Donnell ME. Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation. Proc Natl Acad Sci USA. 2017;114(5):E697-E706. PubMed, PubMedCentral, CrossRef
  36. Yuan Z, Georgescu R, Bai L, Zhang D, Li H, O’Donnell ME. DNA unwinding mechanism of a eukaryotic replicative CMG helicase. Nat Commun. 2020;11(1):688. PubMed, PubMedCentral, CrossRef
  37. Riera A, Barbon M, Noguch Y, Reuter LM, Schneider S, Speck C. From structure to mechanism-understanding initiation of DNA replication. Genes Dev. 2017;31(11):1073-1088. PubMed, PubMedCentral, CrossRef
  38. Klemm RD, Austin RJ, Bell SP. Coordinate binding of ATP and origin DNA regulates the ATPase activity of the origin recognition complex. Cell. 1997;88(4):493-502. PubMed, CrossRef
  39. Liu J, Smith CL, DeRyckere D, DeAngelis K, Martin GS, Berger JM. Structure and function of Cdc6/Cdc18: implications for origin recognition and checkpoint control. Mol Cell. 2000;6(3):637-648. PubMed, CrossRef
  40. Bell SP, Kaguni JM.  Helicase loading at chromosomal origins of replication. Cold Spring Harb Perspect Biol. 2013;5(6):a010124. PubMed, PubMedCentral, CrossRef
  41. Bochman ML, Schwacha A. The Mcm2-7 complex has in vitro helicase activity. Mol Cell. 2008;31(2):287-293. PubMed, CrossRef
  42. Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, Berger JM. The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol. 2011;18(4):471-477.  PubMed, PubMedCentral, CrossRef
  43. Randell JCW, Bowers JL, Rodríguez HK, Bell SP.  Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol Cell. 2006;21(1):29-39. PubMed, CrossRef
  44. Evrin C, Clarke P, Zech J, Rudi L, Sun J, Uhle S, Li H, Stillman B, Speck C. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci USA. 2009;106(48):20240-20245. PubMed, PubMedCentral, CrossRef
  45. Shima N, Pederson KD. Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development. DNA Repair (Amst). 2017;56:166-173. PubMed, PubMedCentral, CrossRef
  46. Blow JJ, Ge XQ, Jackson DA.  How dormant origins promote complete genome replication. Trends Biochem Sci. 2011;36(8):405-414.  PubMed, PubMedCentral, CrossRef
  47. Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell. 2010;37(2):247-258. PubMed, PubMedCentral, CrossRef
  48. Tognetti S, Riera A, Speck C. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma. 2015;124(1):13-26. PubMed, CrossRef
  49. Dewar JM, Budzowska M, Walter JC. The mechanism of DNA replication termination in vertebrates. Nature. 2015;525(7569):345-350. PubMed, PubMedCentral, CrossRef
  50. Moreno SP, Bailey R, Campion N, Herron S, Gambus A. Polyubiquitylation drives replisome disassembly at the termination of DNA replication. Science. 2014;346(6208):477-481. PubMed, CrossRef
  51. Deegan TD, Mukherjee PP, Fujisawa R, Rivera CP, Labib K. CMG helicase disassembly is controlled by replication fork DNA, replisome components and a ubiquitin threshold. Elife. 2020;9:e60371. PubMed, PubMedCentral, CrossRef
  52. Woodward AM, Göhler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ.  Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol. 2006;173(5):673-683. PubMed, PubMedCentral, CrossRef
  53. Ge XQ, Jackson DA, Blow JJ. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev. 2007;21(24):3331-3341. PubMed, PubMedCentral, CrossRef
  54. Ibarra A, Schwob E, Méndez J. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc Natl Acad Sci USA. 2008;105(26):8956-8961. PubMed, PubMedCentral, CrossRef
  55. Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, Buske T, Botchan MR, Shima N. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell. 2011;41(5):543-553. PubMed, PubMedCentral, CrossRef
  56. Shreeram S, Sparks A, Lane DP, Blow JJ. Cell type-specific responses of human cells to inhibition of replication licensing. Oncogene. 2002;21(43):6624-6632. PubMed, PubMedCentral, CrossRef
  57. Lau E, Chiang GG, Abraham RT, Jiang W. Divergent S phase checkpoint activation arising from prereplicative complex deficiency controls cell survival. Mol Biol Cell. 2009;20(17):3953-3964. PubMed, PubMedCentral, CrossRef
  58. Zimmerman KM, Jones RM, Petermann E, Jeggo PA. Diminished origin-licensing capacity specifically sensitizes tumor cells to replication stress. Mol Cancer Res. 2013;11(4):370-380. PubMed, PubMedCentral, CrossRef
  59. Toyokawa G, Masuda K, Daigo Y, Cho HS, Yoshimatsu M, Takawa M, Hayami S, Maejima K, Chino M, Field HI, Neal DE, Tsuchiya Eiju , Ponder BAJ, Maehara Y, Nakamura Y, Hamamoto R. Minichromosome Maintenance Protein 7 is a potential therapeutic target in human cancer and a novel prognostic marker of non-small cell lung cancer. Mol Cancer. 2011;10:65. PubMed, PubMedCentral, CrossRef
  60. Bryant VL, Elias RM, McCarthy SM, Yeatman TJ, Alexandrow MG. Suppression of Reserve MCM Complexes Chemosensitizes to Gemcitabine and 5-Fluorouracil. Mol Cancer Res. 2015;13(9):1296-1305. PubMed, PubMedCentral, CrossRef
  61. Majid S, Dar AA, Saini S, Chen Y,  Shahryari V, Liu J, Zaman MS, Hirata H, Yamamura S, Ueno K, Tanaka Y, Dahiya R. Regulation of minichromosome maintenance gene family by microRNA-1296 and genistein in prostate cancer. Cancer Res. 2010;70(7):2809-2818. PubMed, CrossRef
  62. Liu Y, He G, Wang Y, Guan X, Pang X, Zhang B. MCM-2 is a therapeutic target of Trichostatin A in colon cancer cells. Toxicol Lett. 2013;221(1):23-30. PubMed, CrossRef
  63. Kwon HJ, Hong YK, Park C, Choi YH, Yun HJ, Lee EW, Kim BW. Widdrol induces cell cycle arrest, associated with MCM down-regulation, in human colon adenocarcinoma cells. Cancer Lett. 2010;290(1):96-103. PubMed, CrossRef
  64. Kim SH, Kim SC, Ku JL. Metformin increases chemo-sensitivity via gene downregulation encoding DNA replication proteins in 5-Fu resistant colorectal cancer cells. Oncotarget. 2017;8(34):56546-56557. PubMed, PubMedCentral, CrossRef
  65. Mio C, Lavarone E, Conzatti K, Baldan F, Toffoletto B, Puppin C, Filetti S, Durante C, Russo D, Orlacchio A, Di Cristofano A, Di Loreto C, Damante G. MCM5 as a target of BET inhibitors in thyroid cancer cells. Endocr Relat Cancer. 2016;23(4):335-347.  PubMed, PubMedCentral, CrossRef
  66. 66. Guan YB , Yang DR, Nong SJ, Ni J, Hu CH, Li J, Zhu J, Shan YX. Breviscapine (BVP) inhibits prostate cancer progression through damaging DNA by minichromosome maintenance protein-7 (MCM-7) modulation. Biomed Pharmacother. 2017;93:103-116. PubMed, CrossRef
  67. Ishimi Y, Sugiyama T, Nakaya R, Kanamori M, Kohno T, Enomoto T, Chino M. Effect of heliquinomycin on the activity of human minichromosome maintenance 4/6/7 helicase. FEBS J. 2009;276(12):3382-3391. PubMed, CrossRef
  68. Simon N, Bochman ML, Seguin S, Brodsky JL, Seibel WL, Schwacha A.  Ciprofloxacin is an inhibitor of the Mcm2-7 replicative helicase. Biosci Rep. 2013;33(5):e00072. PubMed, PubMedCentral, CrossRef
  69. Shahabadi N, Asadian AA, Mahdavi M. Intercalation of a Zn(II) complex containing ciprofloxacin drug between DNA base pairs. Nucleosides Nucleotides Nucleic Acids. 2017;36(11):676-689. PubMedCrossRef
  70. Majalekar PP, Shirote PJ. Fluoroquinolones: Blessings Or Curses. Curr Drug Targets. 2020;21(13):1354-1370. PubMed, CrossRef
  71. Abdel-Aal MAA, Abdel-Aziz SA, Shaykoon MSA, Abuo-Rahma GEDA. Towards anticancer fluoroquinolones: A review article. Arch Pharm (Weinheim). 2019;352(7):e1800376.  PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.