Ukr.Biochem.J. 2021; Volume 93, Issue 2, Mar-Apr, pp. 7-22

doi: https://doi.org/10.15407/ubj93.02.007

In silico identification and biochemical validation of plausible molecular targets of 4-thiazolidinone derivative Les-3833 as a potential anticancer agent

L. Kоbylinska1*, D. Khylyuk2, I. Subtelna2,
M. Kitsera3, R. Lesyk2

1Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine;
2Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine;
3Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine;
*e-mail: Kobylinska_Lesya@meduniv.lviv.ua; lesya8@gmail.com

Received: 16 January 2021; Accepted: 23 April 2021

Synthetic 4-thiazolidinone derivatives have a broad range of pharmacologic activities. Thus, 4-thiazolidinones are being investigated to create new molecules and develop active pharmaceutical substances for anticancer treatment. In our previous study, we investigated the pyrazoline-thiazolidinone-isatin conjugates, and determined that Les-3833 was the most active compound and might act through inhibition of PARP-, MAPK-, JNK-, Bcl-2-, CDK1/cyclin B, and/or the caspase family. The aim of this research was to perform molecular docking studies to enable the construction of a pharmacophore model for the Les-3833 compound and investigate probable biological targets. Pharmacophore modeling software packages performed molecular docking studies of probable biological targets and enabled the construction of a pharmacophore model. Docking models of Les-3833 with 11 enzymes involved in apoptotic mechanisms were studied. Based on the pharmacophore modeling results for all 11 enzymes, Les-3833 is predicted to be most active in Chk‑1, caspase-6, and caspase-8. Immunoblot analysis proved that the application of Les-3833 led to inhibition of Ser345 phosphorylation, which is induced by etoposide, the most important modification responsible for Chk‑1 activity. Taken together with the results of the docking studies, several mechanisms for the expression of antitumor activity by 4-thiazolidinones are suggested, and such multi-affinity is a characteristic feature of all these derivatives. The docking analysis confirmed the affinity of test compound Les-3833 for a topoisomerase II inhibitor and a high possibility of inhibitory interaction with Chk-1, caspase-6, and caspase-8.

Keywords: , , ,


References:

  1. Devinyak O, Havrylyuk D, Zimenkovsky B, Lesyk R. Computational search for possible mechanisms of 4-thiazolidinones anticancer activity: The power of visualization. Mol Inform. 2014;33(3):216-229. PubMed, CrossRef
  2. Lesyk R, Zimenkovsky B. 4-thiazolidones: Centenarian history, current status and perspectives for modern organic and medicinal chemistry. Curr Org Chem. 2004;8(16): 1547-1577. CrossRef
  3. Verma A, Saraf SK. 4-thiazolidinone–a biologically active scaffold. Eur J Med Chem. 2008;43(5):897-905. PubMed, CrossRef
  4. Lesyk RB, Zimenkovsky BS, Kaminskyy DV, Kryshchyshyn AP, Havryluk DYa, Atamanyuk DV, Subtel’na IYu, Khyluk DV. Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group. Biopolym Cell. 2011;27(2):107-117. CrossRef
  5. Nirwan S, Chahal V, Kakkar R. Thiazolidinones: Synthesis, reactivity, and their biological applications. J Heterocycl Chem. 2019;56(4):1239-1253.
    CrossRef
  6. Havrylyuk D, Zimenkovsky B, Vasylenko O, Zaprutko L, Gzella A, Lesyk R. Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity. Eur J Med Chem. 2009;44(4):1396-1404.  PubMed, CrossRef
  7. Deshmukh AR, Bhosle MR, Khillare LD, Dhumal ST, Mishra A, Srivastava AK, Mane RA. New tetrazoloquinolinyl methoxyphenyl-4-thiazolidinones: synthesis and antihyperglycemic evaluation. Res Chem Intermed. 2017;43:1107-1120. CrossRef
  8. Wang C, Youle RJ. The role of mitochondria in apoptosis. Annu Rev Genet. 2009;43:95-118. PubMed, PubMedCentral, CrossRef
  9. El-Taher S, Metwaly M. DFT and PCM-TD-DFT investigation of the electronic structures and spectra of 5-(3-phenyl-2-propenylidene)-2-thioxo-4-thiazolidinone derivatives. J Mol Struct. 2017; 1134: 840-850.  CrossRef
  10. Havrylyuk D, Zimenkovsky B, Vasylenko O, Gzella A, Lesyk R. Synthesis of new 4-thiazolidinone-, pyrazoline-, and isatin-based conjugates with promising antitumor activity. J Med Chem. 2012;55(20):8630-8641. PubMed, CrossRef
  11. Kоbylinska LI, Boiko NM, Panchuk RR, Grytsyna II, Klyuchivska OYu, Biletska LP, Lesyk RB, Zіmenkovsky BS, Stoika RS. Putative anticancer potential of novel 4-thiazolidinone derivatives: cytotoxicity toward rat C6 glioma in vitro and correlation of general toxicity with the balance of free radical oxidation in rats. Croat Med J. 2016;57(2):151-163. PubMed, PubMedCentral, CrossRef
  12. Huang S, Garbacci RM, Fraley ME, Steen J, Kreatsoulas C, Hartman G, Stirdivant S, Drakas B, Rickert K, Walsh E, Hamilton K, Buser CA, Hardwick J, Mao X, Abrams M, Beck S, Tao W, Lobell R, Sepp-Lorenzino L, Yan Y, Ikuta M, Murphy JZ, Sardana V, Munshi S, Kuo L, Reilly M, Mahan E. Development of 6-substituted indolylquinolinones as potent Chek1 kinase inhibitors. Bioorg Med Chem Lett. 2006;16(22):5907-5912. PubMed, CrossRef
  13. Heise CE, Murray J, Augustyn KE, Bravo B, Chugha P, Cohen F, Giannetti AM, Gibbons P, Hannoush RN, Hearn BR, Jaishankar P, Ly CQ, Shah K, Stanger K, Steffek M, Tang Y, Zhao X, Lewcock JW, Renslo AR, Flygare J, Arkin MR. Mechanistic and structural understanding of uncompetitive inhibitors of caspase-6. PLoS One. 2012;7(12):e50864. PubMed, PubMedCentralCrossRef
  14. Wang Z, Watt W, Brooks NA, Harris MS, Urban J, Boatman D, McMillan M, Kahn M, Heinrikson RL, Finzel BC, Wittwer AJ, Blinn J, Kamtekar S, Tomasselli AG. Kinetic and structural characterization of caspase-3 and caspase-8 inhibition by a novel class of irreversible inhibitors. Biochim Biophys Acta. 2010;1804(9):1817-1831. PubMed, CrossRef
  15. Green DR. Apoptotic pathways: paper wraps stone blunts scissors. Cell. 2000;102(1):1-4. PubMed, CrossRef
  16. Frankfurt O, Rosen ST. Mechanisms of glucocorticoid-induced apoptosis in hematologic malignancies: updates. Curr Opin Oncol. 2004;16(6):553-563. PubMed, CrossRef
  17. Fulda S, Meyer E, Friesen C, Susin SA, Kroemer G, Debatin KM. Cell type specific involvement of death receptor and mitochondrial pathways in drug-induced apoptosis. Oncogene. 2001;20(9):1063-1075. PubMed, CrossRef
  18. Chumak VV, Panchuk RR, Manko NO, Havrylyuk DY, Lesyk RB, Kobylinska LI, Zimenkovsky BS, Stoika RS. Comparative study of the cytotoxic properties of isatin-containing derivatives of 4-thiazolidinone with different structure toward human tumor cells in vitro. Studia Biologica. 2014;8(2):29-42.  CrossRef
  19. Kоbylinska LI, Klyuchivska OYu, Grytsyna II, Finiuk N, Panchuk RR, Starykovych MO, Lehka L, Lesyk RB, Zіmenkovsky BS, Stoik RS. Differential pro-apoptotic effects of synthetic 4-thiazolidinone derivative Les-3288, doxorubicin and temozolomide in human glioma U251 cells. Croat Med J. 2017;58(2):150-159. PubMed, PubMedCentral, CrossRef
  20. Finiuk N, Boiko N, Klyuchivska O, Коbylinska L, Kril I, Zimenkovsky B, Lesyk R, Stoik R. 4-Thiazolidinone derivative Les-3833 effectively inhibits viability of human melanoma cells through activating apoptotic mechanisms. Croat Med J. 2017;58(2):129-139. PubMed, PubMedCentral, CrossRef
  21. Tapia-Alveal C, Calonge TM, O’Connell MJ. Regulation of chk1. Cell Div. 2009;4:8. PubMed, PubMedCentral, CrossRef
  22. Parsels LA, Qian Y, Tanska DM, Gross M, Zhao L, Hassan MC, Arumugarajah S, Parsels JD, Hylander-Gans L, Simeone DM, Morosini D, Brown JL, Zabludoff SD, Maybaum J, Lawrence TS, Morgan MA. Assessment of chk1 phosphorylation as a pharmacodynamic biomarker of chk1 inhibition. Clin Cancer Res. 2011;17(11):3706-3715. PubMed, PubMedCentral, CrossRef
  23. Montecucco A, Biamonti G. Cellular response to etoposide treatment. Cancer Lett. 2007;252(1):9-18. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.