Ukr.Biochem.J. 2021; Volume 93, Issue 4, Jul-Aug, pp. 5-17

doi: doi:

Chlorine-binding structures: role and organization in different proteins

R. Yu. Marunych*, O. O. Hrabovskyi, G. K. Bereznytskyj,
L. V. Pyrogova, G. K. Gogolinskaya, Ye. M. Makogonenko

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;

Received: 29 September 2020; Accepted: 07 July 2021

The review focuses on chloride-binding structures in the proteins of bacteria, plants, viruses and animals. The structure and amino acid composition of the chloride-binding site and its role in the functioning of structural, regulatory, transport, receptor, channel proteins, transcription factors and enzymes are considered. Data on the important role of chloride-binding structures and chloride anions in the polymerization of fibrin are presented.

Keywords: , , ,


  1. Watanabe M, Fukuda A. Development and regulation of chloride homeostasis in the central nervous system. Front Cell Neurosci. 2015;9:371. PubMed, PubMedCentral, CrossRef
  2. Carugo O. Buried chloride stereochemistry in the Protein Data Bank. BMC Struct Biol. 2014;14:19. PubMed, PubMedCentral, CrossRef
  3. Bull TE, Halle B, Lindman B. Internal motion at the chloride binding sites of human serum albumin by NMR relaxation studies. FEBS Lett. 1978;86(1):25-28. PubMed, CrossRef
  4. Halle B, Lindman B. Chloride ion binding to human plasma albumin from chlorine-35 quadrupole relaxation. Biochemistry. 1978;17(18):3774-3781. PubMed, CrossRef
  5. Scatchard G, Yap WT. The physical chemistry of protein solutions. XII. The effects of temperature and hydroxide ion on the binding of small anions to human serum albumin. J Am Chem Soc. 1964;86(17):3434-3438. CrossRef
  6. Ueno H, Manning JM. The functional, oxygen-linked chloride binding sites of hemoglobin are contiguous within a channel in the central cavity. J Protein Chem. 1992;11(2):177-185. PubMed, CrossRef
  7.  Manning JM. Random chemical modification of hemoglobin to identify chloride binding sites in the central dyad axis: their role in control of oxygen affinity. Artif Cells Blood Substit Immobil Biotechnol. 1994;22(2):199-205 PubMed, CrossRef
  8.  Chiancone E, Norne JE, Forsén S, Bonaventura J, Brunori M, Antonini E, Wyman J. Identification of chloride-binding sites in hemoglobin by nuclear-magnetic-resonance quadrupole-relaxation studies of hemoglobin digests. Eur J Biochem. 1975;55(2):385-390. PubMed, CrossRef
  9. Prange HD, Shoemaker JL, Westen EA, Horstkotte DG, Pinshow B. Physiological consequences of oxygen-dependent chloride binding to hemoglobin. J Appl Physiol. 2001;91(1):33-38.  PubMed, CrossRef
  10. De Rosa MC, Castagnola M, Bertonati C, Galtieri A, Giardina B. From the Arctic to fetal life: physiological importance and structural basis of an ‘additional’ chloride-binding site in haemoglobin. Biochem J. 2004;380(Pt 3):889-896. PubMed, PubMedCentral, CrossRef
  11. Wolf-Watz M, Bäckström S, Grundström T, Sauer U, Härd T. Chloride binding by the AML1/Runx1 transcription factor studied by NMR. FEBS Lett. 2001;488(1-2):81-84. PubMed, CrossRef
  12. Bäckström S, Wolf-Watz M, Grundström C, Härd T, Grundström T, Sauer UH. The RUNX1 Runt domain at 1.25A resolution: a structural switch and specifically bound chloride ions modulate DNA binding. J Mol Biol. 2002;322(2):259-272. PubMed, CrossRef
  13. Wang Z, Asenjo AB, Oprian DD. Identification of the Cl(-)-binding site in the human red and green color vision pigments. Biochemistry. 1993;32(9):2125-2130. PubMed, CrossRef
  14. Tora AS, Rovira X, Dione I, Bertrand HO, Brabet I, De Koninck Y, Doyon N , Pin JP, Acher F, Goudet C. Allosteric modulation of metabotropic glutamate receptors by chloride ions. FASEB J. 2015;29(10):4174-4188. PubMed, CrossRef
  15. Ogawa H, Qiu Y, Philo JS, Arakawa T, Ogata CM, Misono KS. Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain: possible allosteric regulation and a conserved structural motif for the chloride-binding site. Protein Sci. 2010;19(3):544-557. PubMed, PubMedCentral, CrossRef
  16. Hu J, Spiegel AM. Structure and function of the human calcium-sensing receptor: insights from natural and engineered mutations and allosteric modulators. J Cell Mol Med. 2007;11(5):908-922. PubMed, PubMedCentral, CrossRef
  17. Luu P, Acher F, Bertrand HO, Fan J, Ngai J. Molecular determinants of ligand selectivity in a vertebrate odorant receptor. J Neurosci. 2004;24(45):10128-10137. PubMed, PubMedCentral, CrossRef
  18. Pi M, Faber P, Ekema G, Jackson PD, Ting A, Wang N, Fontilla-Poole M, Mays RW, Brunden KR, Harrington JJ, Quarles LD. Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem. 2005;280(48):40201-40209. PubMed, PubMedCentral, CrossRef
  19. Acher FC, Selvam C, Pin JP, Goudet C, Bertrand HO. A critical pocket close to the glutamate binding site of mGlu receptors opens new possibilities for agonist design. Neuropharmacology. 2011;60(1):102-107. PubMed, CrossRef
  20. Ogawa H, Qiu Y, Philo JS, Arakawa T, Ogata CM, Misono KS. Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain: possible allosteric regulation and a conserved structural motif for the chloride-binding site. Protein Sci. 2010;19(3):544-557. PubMed, PubMedCentral, CrossRef
  21. Bertrand HO, Bessis AS, Pin JP, Acher FC. Common and selective molecular determinants involved in metabotopic glutamate receptor agonist activity. J Med Chem. 2002;45(15):3171-3183. PubMed, CrossRef
  22. Ogawa H, Qiu Y, Ogata CM, Misono KS. Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction. J Biol Chem. 2004;279(27):28625-28631. PubMed, CrossRef
  23. Van den Akker F, Zhang X, Miyagi M, Huo X, Misono KS, Yee VC. Structure of the dimerized hormone-binding domain of a guanylyl-cyclase-coupled receptor. Nature. 2000;406(6791):101-104. PubMed, CrossRef
  24. He XL, Chow DC, Martick MM, Garcia KC. Allosteric activation of a spring-loaded natriuretic peptide receptor dimer by hormone. Science. 2001;293(5535):1657-1662. PubMed, CrossRef
  25. Charloux A, Piquard F, Doutreleau S, Brandenberger G, Geny B. Mechanisms of renal hyporesponsiveness to ANP in heart failure. Eur J Clin Invest. 2003;33(9):769-778. PubMed, CrossRef
  26. 26. Kalra PR, Anker SD, Coats AJ. Water and sodium regulation in chronic heart failure: the role of natriuretic peptides and vasopressin. Cardiovasc Res. 2001;51(3):495-509. PubMed, CrossRef
  27. Cataliotti A, Boerrigter G, Chen HH, Jougasaki M, Costello LC, Tsuruda T, Lee SC, Malatino LS, Burnett JC Jr. Differential actions of vasopeptidase inhibition versus angiotensin-converting enzyme inhibition on diuretic therapy in experimental congestive heart failure. Circulation. 2002;105(5):639-644. PubMed, CrossRef
  28. Hamasaki N. The role of band 3 protein in oxygen delivery by red blood cells. Indian J Clin Biochem. 1999;14(1):49-58. PubMed, PubMedCentral, CrossRef
  29. Jennings ML, Passow H. Anion transport across the erythrocyte membrane, in situ proteolysis of band 3 protein, and cross-linking of proteolytic fragments by 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonate. Biochim Biophys Acta. 1979;554(2):498-519. PubMed, CrossRef
  30. Jentsch TJ, Pusch  M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev. 2018;98(3):1493-1590. PubMed, CrossRef
  31. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature. 2002;415(6869):287-294. PubMed, CrossRef
  32. Reithmeier RAF, Casey JR, Kalli AC, Sansom MSP,Alguel Y, Iwata S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim Biophys Acta. 2016;1858(7 Pt A):1507-1532. PubMed, CrossRef
  33. Yamaguchi T, Ikeda Y, Abe Y, Kuma H, Kang D, Hamasaki N, Hirai T. Structure of the membrane domain of human erythrocyte anion exchanger 1 revealed by electron crystallography. J Mol Biol. 2010;397(1):179-189. PubMed, CrossRef
  34. Hirai T, Hamasaki N, Yamaguchi T, Ikeda Y. Topology models of anion exchanger 1 that incorporate the anti-parallel V-shaped motifs found in the EM structure. Biochem Cell Biol. 2011;89(2):148-156. PubMed, CrossRef
  35. Bonar P, Schneider HP, Becker HM, Deitmer JW, Casey JR. Three-dimensional model for the human Cl-/HCO3- exchanger, AE1, by homology to the E. coli ClC protein. J Mol Biol. 2013;425(14):2591-2608. PubMed, CrossRef
  36. Barneaud-Rocca D, Etchebes C, Guizouarn H. Structural model of the anion exchanger 1 (SLC4A1) and identification of transmembrane segments forming the transport site. J Biol Chem. 2013;288(37):26372-26384. PubMed, PubMedCentral, CrossRef
  37. Jennings ML, Anderson MP. Chemical modification and labeling of glutamate residues at the stilbenedisulfonate site of human red blood cell band 3 protein. J Biol Chem. 1987;262(4):1691-1697. PubMed, CrossRef
  38. Jennings ML, Smith JS. Anion-proton cotransport through the human red blood cell band 3 protein. Role of glutamate 681. J Biol Chem. 1992;267(20):13964-13971. PubMed, CrossRef
  39. Chernova MN, Jiang L, Crest M, Hand M, Vandorpe DH, Strange K, Alper SL. Electrogenic sulfate/chloride exchange in Xenopus oocytes mediated by murine AE1 E699Q. J Gen Physiol. 1997;109(3):345-360. PubMed, PubMedCentral, CrossRef
  40. Müller-Berger S, Karbach D, Kang D, Aranibar N, Wood PG, Rüterjans H, Passow H. Roles of histidine 752 and glutamate 699 in the pH dependence of mouse band 3 protein-mediated anion transport. Biochemistry. 1995;34(29):9325-9332. PubMed, CrossRef
  41. Shnitsar V, Li J, Li X, Calmettes C, Basu A, Casey JR, Moraes TF, Reithmeier RAF. A substrate access tunnel in the cytosolic domain is not an essential feature of the solute carrier 4 (SLC4) family of bicarbonate transporters. J Biol Chem. 2013;288(47):33848-33860. PubMed, PubMedCentral, CrossRef
  42. Tavoulari S,Rizwan AN, Forrest LR, Rudnick G. Reconstructing a chloride-binding site in a bacterial neurotransmitter transporter homologue. J Biol Chem. 2011;286(4):2834-2842. PubMed, PubMedCentral, CrossRef
  43. Forrest LR, Tavoulari S, Zhang YW, Rudnick G, Honig B. Identification of a chloride ion binding site in Na+/Cl -dependent transporters. Proc Natl Acad Sci USA. 2007;104(31):12761-12766. PubMed, PubMedCentral, CrossRef
  44. Zomot E, Bendahan A, Quick M, Zhao Y, Javitch JA, Kanner BI. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature. 2007;449(7163):726-730. PubMed, CrossRef
  45. Forrest LR, Zhang YW, Jacobs MT, Gesmonde J, Xie L, Honig BH, Rudnick G.  Mechanism for alternating access in neurotransmitter transporters. Proc Natl Acad Sci USA. 2008;105(30):10338-10343. PubMed, PubMedCentral, CrossRef
  46. Forrest LR, Rudnick G. The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology. 2009;24:377-386. PubMed, PubMedCentral, CrossRef
  47. Kantcheva AK, Quick M, Shi L, Winther AM, Stolzenberg S, Weinstein H, Javitch JA, Nissen P. Chloride binding site of neurotransmitter sodium symporters. Proc Natl Acad Sci USA. 2013;110(21):8489-8494. PubMed, PubMedCentral, CrossRef
  48. Ben-Yona A, Bendaha A, Kanner BI. A glutamine residue conserved in the neurotransmitter:sodium:symporters is essential for the interaction of chloride with the GABA transporter GAT-1. J Biol Chem. 2011;286(4):2826-2833. PubMed, PubMedCentral, CrossRef
  49. Marvizón JC, Skolnick P. Anion regulation of [3H]strychnine binding to glycine-gated chloride channels is explained by the presence of two anion binding sites. Mol Pharmacol. 1988;34(6):806-813. PubMed
  50. Ong PL, Chuang TT, Wang TF, Lin LL. Identification of critical amino acid residues for chloride binding of Bacillus licheniformis trehalose-6-phosphate hydrolase. Biologia. 2014;69(1): 1-9. CrossRef
  51. Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ. Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal. 2014;7(324):ra41. PubMed, PubMedCentral, CrossRef
  52. Hirano T, Mogi T, Tsubaki M, Hori H, Orii Y, Anraku Y. A novel chloride-binding site modulates the heme-copper binuclear center of the Escherichia coli bo-type ubiquinol oxidase. J Biochem. 1997;122(2):430-437. PubMed, CrossRef
  53. Soubrier F, Alhenc-Gelas F, Hubert C, Allegrini J, John M, Tregear G, Corvol P. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci USA. 1988;85(24):9386-9390. PubMed, PubMedCentral, CrossRef
  54. Ehlers MR, Fox EA, Strydom DJ, Riordan JF. Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc Natl Acad Sci USA. 1989;86(20):7741-7745. PubMed, PubMedCentral, CrossRef
  55. Hubert C, Houot AM, Corvol P, Soubrier F. Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J Biol Chem. 1991;266(23):15377-15383. PubMed, CrossRef
  56. Natesh R, Schwager SL, Sturrock ED, Acharya KR. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature. 2003;421(6922):551-554. PubMed, CrossRef
  57. Natesh R, Schwager SL, Evans HR, Sturrock ED, Acharya KR. Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin I-converting enzyme. Biochemistry. 2004;43(27):8718-8724. PubMed, CrossRef
  58. Tzakos AG, Galanis AS, Spyroulias GA, Cordopatis P, Manessi-Zoupa E, Gerothanassis IP. Structure-function discrimination of the N- and C- catalytic domains of human angiotensin-converting enzyme: implications for Cl- activation and peptide hydrolysis mechanisms. Protein Eng. 2003;16(12):993-1003. PubMed, CrossRef
  59. Liu X, Fernandez M, Wouters MA, Heyberger S, Husain A. Arg(1098) is critical for the chloride dependence of human angiotensin I-converting enzyme C-domain catalytic activity. J Biol Chem. 2001;276(36):33518-33525.  PubMed, CrossRef
  60. Moiseeva NA, Binevski PV, Baskin II, Palyulin VA, Kost OA. Role of two chloride-binding sites in functioning of testicular angiotensin-converting enzyme. Biochemistry (Mosc). 2005;70(10):1167-1172. PubMed, CrossRef
  61. Larsson DS, van der Spoel D. Screening for the location of RNA using the chloride ion distribution in simulations of virus capsids. J Chem Theory Comput. 2012;8(7):2474-2483. PubMed, CrossRef
  62. Tarasova E, Farafonov V, Khayat R, Okimoto N, Komatsu TS, Taiji M, Nerukh D. All-Atom Molecular Dynamics Simulations of Entire Virus Capsid Reveal the Role of Ion Distribution in Capsid’s Stability. J Phys Chem Lett. 2017;8(4):779-784. PubMed, PubMedCentral, CrossRef
  63. Tarasova E, Farafonov V,  Taiji M,  Nerukh D. Details of charge distribution in stable viral capsid. J Mol Liquids. 2018;265:585-591. CrossRef
  64. Tarasova E, Korotkin I, Farafonov V, Karabasov S, Nerukh D. Complete virus capsid at all-atom resolution: Simulations using molecular dynamics and hybrid molecular dynamics/hydrodynamics methods reveal semipermeable membrane function. J Mol Liquids. 2017;245:109-114. CrossRef
  65. Gaffney PJ, Urano T, de Serrano VS, Mahmoud-Alexandroni M, Metzger AR, Castellino FJ. Roles for chloride ion and fibrinogen in the activation of [Glu1]plasminogen in human plasma. Proc Natl Acad Sci USA. 1988;85(10):3595-3598. PubMed, PubMedCentral, CrossRef
  66. De Cristofaro R, Peyvandi F, Baronciani L, Palla R, Lavoretano S, Lombardi R, Di Stasio E, Federici AB,  Mannucci PM. Molecular mapping of the chloride-binding site in von Willebrand factor (VWF): energetics and conformational effects on the VWF/ADAMTS-13 interaction. J Biol Chem. 2006;281(41):30400-30411. PubMed, CrossRef
  67. Pyrogova LV, Bereznitsky G., Gogolіnskya GK, Platonova TM, Kolesnіkova ІM, Masenko OO, Marunych RY., Tsap PYu, Ushenіn YuV, Makogonenko EM, Lugovskoi EV.  Comparative analysis of the effect of chlorine and fluorine ions on the polymerization of fibrin.  Ukr Biochim J. 2019;91(6):27-37. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.