Ukr.Biochem.J. 2021; Volume 93, Issue 5, Sep-Oct, pp. 5-13


Short peptide sequences: current knowledge and future prospects

C. M. Nasadyuk

Danylo Halytsky Lviv National Medical University,
Department of Biochemistry, Lviv, Ukraine;

Received: 09 March 2021; Accepted: 22 September 2021

According to modern knowledge, the biological effect of many peptides is mediated by their short-chain fragments – oligopeptides – ranging from 2 to 20 amino acids and the activity of short peptides often significantly exceeds the activity of the peptide precursor. Aim of the review was to summarize the uptodate data on the stability of short peptide sequences, mechanisms of cell penetration, interaction with cell receptors, biological effects and approaches to clinical application. Stability of short peptides is mediated by their structure and molecular weight. Some di-/tripeptides were reported to be able to permeate through intestinal membranes in their intact forms via peptide transporter systems, while others are vulnerable to protease degradation. Although pinocytosis is presumed to be the main mechanism how short peptide sequences enter the cell, some lipophilic oligopeptides were shown to penetrate the cell membrane by the same mechanism as steroid or thyroid hormones and specific extracellular receptors were also described. Low-weighing oligopeptides realize their effect on the cell, chromosomal, genome and molecular levels. The advantages of oligopeptides include oral availability (for low weight compounds), low immunogenicity, high tissue specifici­ty, faster biological effect, better cost efficiency and environmental friendliness of their synthesis. Hence, short peptide sequences are regarded as promising candidates for pharmacotherapy, cell cultures and drug delivery­ purposes.

Keywords: , , ,


  1. Reddy BY, Jow T, Hantash BM. Bioactive oligopeptides in dermatology: Part II. Exp Dermatol. 2012;21(8):569-575. PubMed, CrossRef
  2. Nasadyuk C, Sklyarov A. Gastroprotective oligopeptides. Gastroenterol Hepatol Open Access. 2015;3(1):210‒214.  CrossRef
  3. Khavinson VKh, Lin’kova NS, Tarnovskaya SI. Short Peptides Regulate Gene Expression. Bull Exp Biol Med. 2016;162(2):288-292. PubMed, CrossRef
  4. Sawicka J, Dzierżyńska M, Wardowska A, Deptuła M, Rogujski P, Sosnowski P, Filipowicz N, Mieczkowska A, Sass P, Pawlik A, Hać A, Schumacher A, Gucwa M, Karska N, Kamińska J, Płatek R, Mazuryk J, Zieliński J, Kondej K, Młynarz P, Mucha P, Skowron P, Janus Ł, Herman-Antosiewicz A, Sachadyn P, Czupryn A, Piotrowski A, Pikuła M, Rodziewicz-Motowidło S. Imunofan-RDKVYR Peptide-Stimulates Skin Cell Proliferation and Promotes Tissue Repair. Molecules. 2020;25(12):2884.  PubMed, PubMedCentral, CrossRef
  5. Gudasheva TA, Ostrovskaya RU, Seredenin SB. Novel Technologies for Dipeptide Drugs Design and their Implantation. Curr Pharm Des. 2018;24(26):3020-3027. PubMed, PubMedCentral, CrossRef
  6. Kapica M, Laubitz D, Puzio I, Jankowska A, Zabielski R. The ghrelin pentapeptide inhibits the secretion of pancreatic juice in rats. J Physiol Pharmacol. 2006;57(4):691-700. PubMed
  7. Nasadyuk CM, Sogomonyan .A, Yashchenko AM, Sklyarov AY. Lectinocytochemical study of rat stomach mucosa under the conditions of cyclooxygenase-1/-2 blockage and pretreatment with H-Glu-Asp-Gly-OH. Ukr Biochem J. 2020;92(2):33-43. CrossRef
  8. Nasadyuk C, Sklyarov A. Thymohexin exhibits cytoprotective effect in experimental gastric lesions in rats both through the inhibition of inducible nitric oxide synthase and reduction of oxidative mucosal damage. Regul Pept. 2013;180:50-57. PubMed, CrossRef
  9. Nasadyuk KH, Sklyarov OY. The influence of the short peptide of arg-alfa-asp-lys-val-tyr-arg on the activity of NO-synthase system and processes of lipoperoxidation in experimental gastric lesions in rats. Annales Universitatis Mariae Curie-Sklodowska, Sectio DDD: Pharmacia. 2010;23(3):241-245.
  10. Reddy B, Jow T, Hantash BM. Bioactive oligopeptides in dermatology: Part I. Exp Dermatol. 2012;21(8):563-568. PubMed, CrossRef
  11. Kodama RT, Cajado-Carvalho D, Kuniyoshi AK, Kitano ES, Tashima AK, Barna BF, Takakura AC, Serrano SMT, Dias-Da-Silva W, Tambourgi DV, Portaro FV. New proline-rich oligopeptides from the venom of African adders: Insights into the hypotensive effect of the venoms. Biochim Biophys Acta. 2015;1850(6):1180-1187. PubMed, CrossRef
  12. Khavinson V, Linkova N, Diatlova A, Trofimova S. Peptide Regulation of Cell Differentiation. Stem Cell Rev Rep. 2020;16(1):118-125. PubMed, CrossRef
  13. Zamyatnin AA. Structural-functional diversity of the natural oligopeptides. Prog Biophys Mol Biol. 2018;133:1-8. PubMed, CrossRef
  14. Caputi S, Trubiani O , Sinjari B, Trofimova S, Diomede F, Linkova N, Diatlova A, Khavinson V. Effect of short peptides on neuronal differentiation of stem cells. Int J Immunopathol Pharmacol. 2019;33:2058738419828613. PubMed, PubMedCentral, CrossRef
  15. Khan NA, Benner R. Human chorionic gonadotropin: a model molecule for oligopeptide-based drug discovery. Endocr Metab Immune Disord Drug Targets. 2011;11(1):32-53.  PubMed, CrossRef
  16. Shen W, Matsui T. Current knowledge of intestinal absorption of bioactive peptides. Food Funct. 2017;8(12):4306-4314. PubMed, CrossRef
  17. Di L. Strategic approaches to optimizing peptide ADME properties. AAPS J. 2015;17(1):134-143. PubMed, PubMedCentral, CrossRef
  18. Sun L. Peptide-Based Drug Development. Mod Chem Appl. 2013;1(1):1000e103. CrossRef
  19. Timofeeva NM, Khavinson VKh, Malinin VV, Nikitina AA, Egorova VV. Effect of peptide Livagen on activity of digestive enzymes in gastrointestinal tract and non-digestive organs in rats of different ages. Adv Gerontol. 2005;16:92-96. (In Russian). PubMed
  20. Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 2013;81(1):136-147. PubMed, CrossRef
  21. V’yunova TV, Andreeva LA, Shevchenko KV, Shevchenko VP, Myasoedov NF. The synthesis and study of simple glyprolines. Neurochem J. 2016;10(3):219–225.  CrossRef
  22. Werle M, Bernkop-Schnürch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids. 2006;30(4):351-367. PubMed, CrossRef
  23. Böttger R, Hoffmann R, Knappe D. Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLoS One. 2017;12(6):e0178943. PubMed, PubMedCentral, CrossRef
  24. Tolstenok IV, Fleyshman, Slobodenyuk EV. The impact of glyprolines on processes of ulceration in the experiment. Pacific Med J. 2016;(4):14-15. (In Russian). CrossRef
  25. Shevchenko KV, Bezuglov VV, Akimov MG, Nagaev IYu, Shevchenko VP, Myasoedov NF. Synthesis of N-acyl derivatives of Pro-Gly-Pro-Leu peptide: Proteolytic stability in vitro and effects on mouse macrophage cells RAW264.7. Dokl Biochem Biophys. 2017;476(1):333-336. PubMed, CrossRef
  26. Misiura M, Miltyk W. Proline-containing peptides-New insight and implications: A Review. Biofactors. 2019;45(6):857-866. PubMed, CrossRef
  27. Sikiric P, Seiwerth S, Rucman R, Turkovic B, Rokotov DS, Brcic L, Sever M, Klicek R, Radic B, Drmic D, Ilic S, Kolenc D, Vrcic H, Sebecic B. Stable gastric pentadecapeptide BPC 157: novel therapy in gastrointestinal tract. Curr Pharm Des. 2011;17(16):1612-1632. PubMed, CrossRef
  28. Gleeson JP, Heade J, Ryan SM, Brayden DJ. Stability, toxicity and intestinal permeation enhancement of two food-derived antihypertensive tripeptides, Ile-Pro-Pro and Leu-Lys-Pro. Peptides. 2015;71:1-7. PubMed, CrossRef
  29. Wang C, Li B, Wang B, Xie N. Degradation and antioxidant activities of peptides and zinc-peptide complexes during in vitro gastrointestinal digestion. Food Chem. 2015;173:733-740. PubMed, CrossRef
  30. Yang L, Zhang L, Yan L, Zheng H, Lu P, Chen J, Dai J, Sun H, Xu Y, Yang T. Stability assessment of a new antithrombotic small peptide, Arg-Gly-Asp-Trp-Arg (RGDWR), and its derivative. Biotechnol Lett. 2017;39(8):1183-1190. PubMed, CrossRef
  31. Tomova TA, Prosekina EJu, Gridneva VI, Zamoshchina TA. The modulation of cholinergic influences on gastric secretory activity by peptides prolilglycilprolin and glycilprolin. Ann Tomsk State Univ. Biology. 2011;(4(16)):146–156. (In Russian).
  32. Teleshova ES, Bochkarev VK, Syunyakov TS, Bugaeva TP, Neznamov GG. The results of clinical and EEG study of anxiolythic effects of heptapeptide selanc. Psychiatry. 2010;(4(46)): 26–35. (In Russian).
  33. Wang T, Zhang YR, Liu XH, Ge S, Zhu YS. Strategy for the Biosynthesis of Short Oligopeptides: Green and Sustainable Chemistry. Biomolecules. 2019;9(11):733. PubMed, PubMedCentral, CrossRef
  34. Sinjari B, Diomede F,  Khavinson V, Mironova E, Linkova N, Trofimova S, Trubiani O, Caputi S. Short Peptides Protect Oral Stem Cells from Ageing. Stem Cell Rev Rep. 2020;16(1):159-166. PubMed, CrossRef
  35. Nasadyuk CM, Sklyarov OYa. Personalized medicine: current status and prospects. Cell Organ Transplantology. 2019;7(1):63-65. CrossRef
  36. Domalaon R, Zhanel GG, Schweizer F. Short Antimicrobial Peptides and Peptide Scaffolds as Promising Antibacterial Agents. Curr Top Med Chem. 2016;16(11):1217-1230. PubMed, CrossRef
  37. Mao R, Wu L, Zhu N, Liu X, Haj Y, Liu R, Du W, Li Y. Immunomodulatory effects of walnut (Juglans regia L.) oligopeptides on  innate and adaptive immune responses in mice. J Funct Foods. 2020;73:104068. CrossRef
  38. Zheng ZQ, Geng ZH, Liu JX , Guo ST. Compressed food with added functional oligopeptides improves performance during military endurance training. Asia Pac J Clin Nutr. 2017;26(6):1066-1075. PubMed, CrossRef
  39. Gwyer D, Wragg NM, Wilson SL. Gastric pentadecapeptide body protection compound BPC 157 and its role in accelerating musculoskeletal soft tissue healing. Cell Tissue Res. 2019;377(2):153-159. PubMed, CrossRef
  40. Falalyeyeva TM, Samonina GE, Beregovaya TV, Andreeva LA, Dvorshchenko EV. Effect of glyprolines on homeostasis of gastric mucosa in rats with stress ulcers. Bull Exp Biol Med. 2010;149(1):26-28. PubMed, CrossRef
  41. Falalyeyeva TM, Samonina GE, Beregovaya TV, Andreeva LA, Dvorshchenko EA. Effect of glyprolines PGP, GP, and PG on homeostasis of gastric mucosa in rats with experimental ethanol-induced gastric ulcers. Bull Exp Biol Med. 2010;149(6):699-701. PubMed, CrossRef
  42. Nasadyuk C, Panasyuk N, Fomenko I, Sklyarov O. The role of cyclooxygenase isoforms in the mechanisms of cytoprotection of gastric mucosa under the influence of hexapeptide Arg-a-Asp-Lys-Val-Tyr-Arg. Curr Issues Pharm Med Sci. 2012;25(4):446-448. CrossRef
  43. Khamessi O, Ben Mabrouk H, ElFessi-Magouri R, Kharrat R. RK1, the first very short peptide from Buthus occitanus tunetanus inhibits tumor cell migration, proliferation and angiogenesis. Biochem Biophys Res Commun. 2018;499(1):1-7. PubMed, CrossRef
  44. Ano Y, Yoshino Y, Uchida K, Nakayama H. Preventive Effects of Tryptophan-Methionine Dipeptide on Neural Inflammation and Alzheimer’s Pathology. Int J Mol Sci. 2019;20(13):3206. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.