Ukr.Biochem.J. 2021; Volume 93, Issue 5, Sep-Oct, pp. 82-89


Thermodynamics of interaction between polyreactive immunoglobulins and immobilized antigen

S. A. Bobrovnik1*, O. V. Ogloblya2, M. O. Demchenko1, S. V. Komisarenko1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
2ESC Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Ukraine;

Received: 22 April 2021; Accepted: 22 September 2021

In order to determine thermodynamic parameters of the interaction between polyreactive immunoglobulins (PRIGs) and immobilized antigen, several of experimental kinetic curves of PRIGs binding to immobilized ovalbumin were obtained at different temperatures. This allowed determining the rate constants for every step of the binding process for each temperature. Then, using appropriate equations, thermodynamic parameters, such as activation energy, enthalpy, entropy, and standard free energy (Gibbs energy), were calculated. Thermodynamic values obtained show that the main energy consuming step in the study process of PRIGs bindingis the transformation of “inactive” PRIGs into “active” PRIGs, i.e. formation of hydrophobic patches on the surface of PRIGs molecules. In contrast, the following step of the binding of “active” PRIGs to an immobilized antigen is not an energy dependent process.

Keywords: , , , ,


  1. Berzofsky JA, Berkover AJ. Antibody-antigen interaction. Fundamental Immunology. Ed. by Paul WE., 1989, Raven Press, New York, p.3-88.
  2. Milling S. The importance of polyreactive antibodies in protection against pneumococcal infection. Immunology. 2021;162(4):339-340. PubMed, PubMedCentral, CrossRef
  3. Machado H, Figueiredo LM. Polyreactive Antibodies Bridge Immunity Particles to Pathogen. Trends Parasitol. 2020;36(10):804-806. PubMed, CrossRef
  4. Gunti S, Herman SEM, Gottumukkala RVSRK , Xiong Y, Sun C, Carmona GN , Wiestner A, Notkins AL. Polyreactive antibodies in CLL correlate with the level of immunoglobulins not the number of B lymphocytes. Leuk Lymphoma. 2019;60(1):242-245. PubMed, PubMedCentral, CrossRef
  5. Liao H, Zhang Z. Polyreactive Antibodies in Anti-HIV-1 Responses. Curr Mol Med. 2018;18(2):126-133. PubMed, CrossRef
  6. Bunker JJ, Erickson SA, Flynn TM, Henry C, Koval JC, Meisel M , Jabri B, Antonopoulos DA, Wilson PC, Bendelac A. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science. 2017;358(6361):eaan6619. PubMed, PubMedCentral, CrossRef
  7. Liao H, Yu Y, Li S , Yue Y, Tao C, Su K, Zhang Z. Circulating Plasmablasts from Chronically Human Immunodeficiency Virus-Infected Individuals Predominantly Produce Polyreactive/Autoreactive Antibodies. Front Immunol. 2017;8:1691. PubMed, PubMedCentral, CrossRef
  8. Zorn E, See SB. Polyreactive natural antibodies in transplantation. Curr Opin Organ Transplant. 2017;22(1):8-13.
    PubMed, CrossRef
  9. Lecerf M, Jarossay A, Kaveri SV, Lacroix-Desmazes S, Dimitrov JD. Methods for Posttranslational Induction of Polyreactivity of Antibodies. Methods Mol Biol. 2017;1643:135-145. PubMed, CrossRef
  10. Gunti S, Notkins AL. Polyreactive Antibodies: Function and Quantification. J Infect Dis. 2015;212 Suppl 1(Suppl 1):S42-S46. PubMed, PubMedCentral, CrossRef
  11. Mahendra A, Gangadharan B, André S, Boudjoghra M, Davi F, Lecerf M, Planchais C, Kaveri SV, Lacroix-Desmazes S, Dimitrov JD. Cryptic polyreactivity of IgG expressed by splenic marginal zone B-cell lymphoma. Mol Immunol. 2014;60(1):54-61. PubMed, CrossRef
  12. Bobrovnik SA. Polyreactive immunoglobulins: molecular properties and functions. Comments Mol Cell Biophys. 1999;9(6):323-356.
  13. Bobrovnik SA, Ogloblya OV, Demchenko MO, Komisarenko SV. Kinetics of interaction between polyreactive immunoglobulins and antigen. Ukr Biochem J. 2020;92(5):15-22. CrossRef
  14. Bobrovnik SA. Polyreactive immunoglobulins recognize hydrophobic parts of proteins. Ukr Biokhim Zhurn. 2001;73(2):116-122. (In Russian). PubMed
  15. Bobrovnik SA, Demchenko MO, Komisarenko SV.  Interaction peculiarities of polyreactive immunoglobulins and various antigens. Ukr Biochem J. 2014;86(1):68-74. PubMed, CrossRef
  16. Bobrovnik SA. Mechanism of interaction between polyreactive immunoglobulins and protein antigens. Ukr Biokhim Zhurn. 2002;74(2):37-44. PubMed
  17. Bobrovnik SA. Determination of antibody affinity by ELISA. Theory. J Biochem Biophys Methods. 2003;57(3):213-236. PubMed, CrossRef
  18. Chang R. Physical chemistry with applications to biological systems. Macmillan Publishing Co., Inc. New York, 1977.
  19. Koshlan TV, Kulikov KG. Mathematical modeling of the effect of temperature on the nature of binding of monomeric proteins in aqueous solutions. J Tech Physics. 2017; 87(11) 1734-1741. CrossRef
  20. Kazemi M, Åqvist J. Chemical reaction mechanisms in solution from brute force computational Arrhenius plots. Nat Commun. 2015;6:7293. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.