Ukr.Biochem.J. 2022; Volume 94, Issue 2, Mar-Apr, pp. 15-23


Nanoparticles application as a therapeutic strategy for diabetes mellitus management

A. B. Ojo1, A. I. Oni2, D. Rotimi2, M. Iyobhebhe2,
P. O. Adeniji3, J. Talabi4, O. A. Ojo2,5*

1Department of Biochemistry, Ekiti State University, Ado-Ekiti, Nigeria;
2Department of Biochemistry, Landmark University, Omu-Aran, Nigeria;
3Department of Tourism Studies, Redeemer’s University, Ede, Nigeria;
4Department of Food Science, Afe Babalola University, Ado-Ekiti, Nigeria;
5Department of Biochemistry, Bowen University, Iwo, Nigeria;

Received: 08 December 2021; Accepted: 01 July 2022

The prevalence of diabetes, as reported by the World Health Organization and the International Diabetes Federation, has raised many eyebrows about the dangers of diabetes mellitus to society, leading to the development of various therapeutic techniques, including nanotechnological, in the management of this disease. This review discusses silver, gold, ceramic, alloy, magnetic, silica, polymeric nanoparticles and their various applications in diabetes management which may help to reduce the incidence of diabetes and its complication.

Keywords: , ,


  1. Alomari G, Hamdan S, Al-Trad B. Gold nanoparticles as a promising treatment for diabetes and its complications: Current and future potentials. Braz J Pharm Sci. 2021;57:e19040. CrossRef
  2. Kashihara N, Y Haruna, Kondeti VK, Kanwar YS. Oxidative stress in diabetic nephropathy. Curr Med Chem. 2010;17(34):4256-4269. PubMed, PubMedCentral, CrossRef
  3. Barathmanikanth S, Kalishwaralal K, Sriram M, Pandian SR, Youn HS, Eom S, Gurunathan S. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnology. 2010;8:16. PubMed, PubMedCentral, CrossRef
  4. Stokes A, Preston SH. Deaths Attributable to Diabetes in the United States: Comparison of Data Sources and Estimation Approaches. PLoS One. 2017;12(1):e0170219. PubMed, PubMedCentral, CrossRef
  5. Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40-50. PubMed, CrossRef
  6. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98. PubMed, CrossRef
  7. Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson A, Vikman P, Prasad RB, Aly DM, Almgren P, Wessman Y, Shaat N, Spégel P, Mulder H, Lindholm E, Melander O, Hansson O, Malmqvist U, Lernmark Å, Lahti K, Forsén T, Tuomi T, Rosengren AH, Groop L. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361-369.
    PubMed, CrossRef
  8. Tasyurek HM, Altunbas HA, Balci MK, Sanlioglu S. Incretins: their physiology and application in the treatment of diabetes mellitus. Diabetes Metab Res Rev. 2014;30(5):354-371. PubMed, CrossRef
  9. Wang K, Zhang Y, Zhao C, Jiang M. SGLT-2 Inhibitors and DPP-4 Inhibitors as Second-Line Drugs in Patients with Type 2 Diabetes: A Meta-Analysis of Randomized Clinical Trials. Horm Metab Res. 2018;50(10):768-777. PubMed, CrossRef
  10. Gaziano TA, Bitton A, Anand S, Abrahams-Gessel S, Murphy A. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr Probl Cardiol. 2010;35(2):72-115. PubMed, PubMedCentral, CrossRef
  11. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138-157. PubMed, CrossRef
  12. Ojo OA, Olayide II, Akalabu MC, Ajiboye BO, Ojo AB, Oyinloye BE, Ramalingam M. Nanoparticles and their Biomedical Applications. Biointerface Res Appl Chem. 2021;11(1):8431-8445. CrossRef
  13. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008;41(12):1578-1586. PubMed, CrossRef
  14. DiSanto RM, Subramanian V, Gu Z. Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(4):548-564. PubMed, PubMedCentral, CrossRef
  15. Gupta R. Diabetes treatment by nanotechnology. J Biotechnol Biomater. 2017;7(3):268. CrossRef
  16. Miñon-Hernández D, Villalobos-Espinosa J, Santiago-Roque I, Gonzalez-Herrera SL, Herrera-Meza S, Meza-Alvarado E, Bello-Pérez A, Osorio-Díaz P, Chanona-Pérez J, Méndez-Méndez JV, Acosta-Mesa HG, Chavez-Servia JL, Azuara-Nieto E, Guzmán-Gerónimo RI. Biofunctionality of native and nano-structured blue corn starch in prediabetic Wistar rats. CyTA J Food. 2018;16(1):477–483. CrossRef
  17. Sharma G, Sharma AR, Nam JS, Doss GPC, Lee SS, Chakraborty C. Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes. J Nanobiotechnology. 2015;13:74. PubMed, PubMedCentral, CrossRef
  18. Alai MS, Lin WJ, Pingale SS. Application of polymeric nanoparticles and micelles in insulin oral delivery. J Food Drug Anal. 2015;23(3):351-358.
    PubMed, CrossRef
  19. Russell SJ, El-Khatib FH, Sinha M, Magyar KL, McKeon K, Goergen LG, Balliro C, Hillard MA, Nathan DM, Damiano ER. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N Engl J Med. 2014;371(4):313-325. PubMed, PubMedCentral, CrossRef
  20. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 th edition. Diabetes Res Clin Pract. 2019;157:107843. PubMed, CrossRef
  21. Yang X. Design and optimization of crocetin loaded PLGA nanoparticles against diabetic nephropathy via suppression of inflammatory biomarkers: a formulation approach to preclinical study. Drug Deliv. 2019;26(1):849-859. PubMed, PubMedCentral, CrossRef
  22. Ahangarpour A, Oroojan AA, Khorsandi L, Kouchak M, Badavi M. Antioxidant, anti-apoptotic, and protective effects of myricitrin and its solid lipid nanoparticle on streptozotocin-nicotinamide-induced diabetic nephropathy in type 2 diabetic male mice. Iran J Basic Med Sci. 2019;22(12):1424-1431. PubMed, PubMedCentral, CrossRef
  23. Ahad A, Raish M, Ahmad A, Al-Jenoobi FI, Al-Mohizea AM. Eprosartan mesylate loaded bilosomes as potential nano-carriers against diabetic nephropathy in streptozotocin-induced diabetic rats. Eur J Pharm Sci. 2018;111:409-417. PubMed, CrossRef
  24. He Y, Al-Mureish A, Wu N. Nanotechnology in the Treatment of Diabetic Complications: A Comprehensive Narrative Review. J Diabetes Res. 2021;2021:6612063. PubMed, PubMedCentral, CrossRef
  25. Wei Y, Yonghao G. Research progress on pathogenesis of diabetic retinopathy. J Pract Prev Blind. 2016;11(3):127-131.
  26. Fangueiro JF, Silva AM, Garcia ML, Souto EB. Current nanotechnology approaches for the treatment and management of diabetic retinopathy. Eur J Pharm Biopharm. 2015;95(Pt B):307-322. PubMed, CrossRef
  27. Jo DH, Kim JH, Yu YS, Lee TG, Kim JH. Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor. Nanomedicine. 2012;8(5):784-791. PubMed, CrossRef
  28. Kim JH, Kim MH, Jo DH, Yu YS, Lee TG, Kim JH. The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials. 2011;32(7):1865-1871. PubMed, CrossRef
  29. Jo DH, Kim JH, Son JG, Song NW, Kim YI, Yu YS , Lee TG, Kim JH. Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity. Nanomedicine. 2014;10(5):1109-1117. PubMed, CrossRef
  30. Zhang C, Zhang L, Chen S, Feng B, Lu X, Bai Y, Liang G, Tan Y, Shao M, Skibba M, Jin L, Li X, Chakrabarti S, Cai L. The prevention of diabetic cardiomyopathy by non-mitogenic acidic fibroblast growth factor is probably mediated by the suppression of oxidative stress and damage. PLoS One. 2013;8(12):e82287. PubMed, PubMedCentral, CrossRef
  31. Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev. 2013;18(2):149-166. PubMed, PubMedCentral, CrossRef
  32. Enomoto M, Ishizu T, Seo Y, Kameda Y, Suzuki H, Shimano H, Kawakami Y, Aonuma K. Myocardial dysfunction identified by three-dimensional speckle tracking echocardiography in type 2 diabetes patients relates to complications of microangiopathy. J Cardiol. 2016;68(4):282-287. PubMed, CrossRef
  33. Mao Y, Hu Y, Feng W, Yu L, Li P, Cai B, Li C, Guan H. Effects and mechanisms of PSS-loaded nanoparticles on coronary microcirculation dysfunction in streptozotocin-induced diabetic cardiomyopathy rats. Biomed Pharmacother. 2020;121:109280. PubMed, CrossRef
  34. Kumar HK, Kota S, Basile A, Modi K. Profile of microvascular disease in type 2 diabetes in a tertiary health care hospital in India. Ann Med Health Sci Res. 2012;2(2):103-108. PubMed, PubMedCentral, CrossRef
  35. Jia T, Rao J, Zou L, Zhao S, Yi Z, Wu B, Li L, Yuan H, Shi L, Zhang C, Gao Y, Liu S, Xu H, Liu H, Liang S, Li G. Nanoparticle-Encapsulated Curcumin Inhibits Diabetic Neuropathic Pain Involving the P2Y12 Receptor in the Dorsal Root Ganglia. Front Neurosci. 2018;11:755. PubMed, PubMedCentral, CrossRef
  36. Luo Q, Feng Y, Xie Y, Shao Y, Wu M, Deng X, Yuan WE, Chen Y, Shi X. Nanoparticle-microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. Nanomedicine. 2019;17:188-197. PubMed, CrossRef
  37. Patel S, Nanda R, Sahoo S. Nanotechnology in healthcare: applications and challenges. Med Chem. 2015;5(12):528-533. CrossRef
  38. Modasiya MK, Patel VM. Studies on solubility of curcumin. Int J Pharm Life Sci. 2012;3(3):1490-1497.
  39. Lappin E, Ferguson AJ. Gram-positive toxic shock syndromes. Lancet Infect Dis. 2009;9(5):281-290. PubMed, CrossRef
  40. Singh D, Mahajan NK, Lather D, Nehra V. An outbreak of Aspergillosis in Emu chicks at an organized farm in Haryana. Vet Pract. 2013;14(2):290-291.
  41. Tang KS. The current and future perspectives of zinc oxide nanoparticles in the treatment of diabetes mellitus. Life Sci. 2019;239:117011. PubMed, CrossRef
  42. Ukperoro JU, Offiah N, Idris T, Awogoke D. Antioxidant effect of zinc, selenium and their combination on the liver and kidney of alloxan-induced diabetes in rats. Mediterr J Nutr Metab. 2010;3(1):25-30. CrossRef
  43. Alkaladi A, Abdelazim AM, Afifi M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int J Mol Sci. 2014;15(2):2015-2023. PubMed, PubMedCentral, CrossRef
  44. Smith SC Jr, Feldman TE, Hirshfeld JW Jr, Jacobs AK, Kern MJ, King SB 3rd, Morrison DA, O’Neill WW, Schaff HV, Whitlow PL, Williams DO, Antman EM, Smith SC Jr, Adams CD, Anderson JL, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Hunt SA, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B. ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention). J Am Coll Cardiol. 2006;47(1):e1-121. PubMed, CrossRef
  45. Rawat M, Singh D, Saraf S, Saraf S. Development and in vitro evaluation of alginate gel-encapsulated, chitosan-coated ceramic nanocores for oral delivery of enzyme. Drug Dev Ind Pharm. 2008;34(2):181-188. PubMed, CrossRef
  46. Singh D, Singh S, Sahu J, Srivastava S, Singh MR. Ceramic nanoparticles: Recompense, cellular uptake and toxicity concerns. Artif Cells Nanomed Biotechnol. 2016;44(1):401-409. PubMed, CrossRef
  47. Liu S, Xue S, Zhang W, Zhai J. Enhanced dielectric and energy storage density induced by surface-modified BaTiO3 nanofibers in poly (vinylidene fluoride) nanocomposites. Ceramics Int. 2014;40(10):15633-15640. CrossRef
  48. Ahmed MA, Okasha N, El-Dek SI. Preparation and characterization of nanometric Mn ferrite via different methods. Nanotechnology. 2008;19(6):065603. PubMed, CrossRef
  49. Siegel DS, Waldman DA, Atwater LE, Link AN. Toward a model of the effective transfer of scientific knowledge from academicians to practitioners: qualitative evidence from the commercialization of university technologies. J Eng Technol Manag. 2004;21(1-2):115-142. CrossRef
  50. Wong E, Bigdeli A, Biglari-Abhari MA. Conducting polymer-based self-regulating insulin delivery system. Int J Sci Res. 2006;16:235-239.
  51. Martanto W, Davis SP, Holiday NR, Wang J, Gill HS, Prausnitz MR. Transdermal delivery of insulin using microneedles in vivo. Pharm Res. 2004;21(6):947-952. PubMed, CrossRef
  52. Joshi P, Chakraborti S, Ramirez-Vick JE, Ansari ZA, Shanker V, Chakrabarti P, Singh SP. The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloids Surf B Biointerfaces. 2012;95:195-200. PubMed, CrossRef
  53. Chalasani KB, Russell-Jones GJ, Yandrapu SK, Diwan PV, Jain SK. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release. 2007;117(3):421-429. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.