Ukr.Biochem.J. 2022; Volume 94, Issue 3, May-Jun, pp. 26-38

doi: https://doi.org/10.15407/ubj94.03.026

Involvement of Cu-containing amine oxidases in the development of lung pathology in ovalbumin-induced bronchial asthma in guinea pigs

O. Hudkova1*, S. Luhovskyi2, L. Drobot1, N. Latyshko1

1Palladin Institute of Biochemistry, National Academy of Sсiences of Ukraine, Kyiv;
2Dmitry F. Chebotarev Institute of Gerontology, National Academy of Medical Sciences of Ukraine, Kyiv;
*e-mail: ogudkova@biochem.kiev.ua

Received: 03 August 2022; Revised: 15 September 2022;
Accepted: 29 September 2022; Available on-line: 06 October 2022

Bronchial asthma is developed as an immune response to allergen challenges accompanied by inflammation and fibrosis implicated in airway remodeling. To reveal the causative implication of Cu-containing amine oxidases, semicarbazide-sensitive amine oxidase (SSAO), diamine oxidase (DAO), and lysyl oxidase (LOX), in bronchial asthma development we used their irreversible inhibitor, semicarbazide, and ovalbumin-induced pathology in guinea pigs. Semicarbazide was introduced to asthmatic animals via drink or inhalation. At the 16th week after disease induction, the increase in the activity of pro-inflammatory SSAO and DAO in plasma (1.6 and 2 times, respectively) was observed. The introduction of semicarbazide to asthmatic animals via drink or inhalation significantly decreased activities of these enzymes compared to the untreated asthmatic animals. A considerable­ increase in IL-13 content and LOX activity in the lung tissue of asthmatic animals were observed that evidenced airway inflammation and pulmonary fibrosis development. The uptake of semicarbazide by guinea pigs with bronchial asthma led to normalization of LOX activity. Histological studies confirmed that semicarbazide attenuated morphopathological changes in the lungs of asthmatic animals. Thus, the data obtained indicate the direct participation of the studied enzymes in the progression of pathological processes in atopic bronchial asthma as well as the potential use of semicarbazide as a drug in complex anti-asthmatic therapy.

Keywords: , , , , , ,


References:

  1. Boulet LP, Reddel HK, Bateman E, Pedersen S, FitzGerald JM, O’Byrne PM. The Global Initiative for Asthma (GINA): 25 years later. Eur Respir J. 2019;54(2):1900598. PubMed, CrossRef
  2. Antwi AO, Obiri DD, Osafo N. Stigmasterol Modulates Allergic Airway Inflammation in Guinea Pig Model of Ovalbumin-Induced Asthma. Mediators Inflamm. 2017;2017:2953930. PubMed, PubMedCentral, CrossRef
  3. Gour N, Wills-Karp M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine. 2015;75(1):68-78. PubMed, PubMedCentral, CrossRef
  4. Refaat MM, Abdel-Rehim AS, Elmahdi AR, Mohamed NA, Ghonaim SS. Diamine oxidase enzyme: a novel biomarker in respiratory allergy. Int Forum Allergy Rhinol. 2019;9(12):1478-1484. PubMed, CrossRef
  5. Ostronosova NS, Volozhin AI. Changes in content of biologically active amines in plasma and blood cells in bronchial asthma. Patol Fiziol Eksp Ter. 2005;(4):11-13. (In Russian). PubMed
  6. Schilter HC, Collison A, Russo RC, Foot JS, Yow TT, Vieira AT, Tavares LD, Mattes J, Teixeira MM, Jarolimek W. Effects of an anti-inflammatory VAP-1/SSAO inhibitor, PXS-4728A, on pulmonary neutrophil migration. Respir Res. 2015;16(1):42. PubMed, PubMedCentral, CrossRef
  7. Ramis J, Middlewick R, Pappalardo F, Cairns JT, Stewart ID, John AE, Naveed SUN, Krishnan R, Miller S , Shaw DE, Brightling CE, Buttery L, Rose F, Jenkins G, Johnson SR, Tatler AL. Lysyl oxidase like 2 is increased in asthma and contributes to asthmatic airway remodelling. Eur Respir J. 2022;60(1):2004361. PubMed, PubMedCentral, CrossRef
  8. Vasconcelos LHC, Ferreira SRD, Silva MDCC, Ferreira PB, de Souza ILL, Cavalcante FA, da Silva BA. Uncovering the Role of Oxidative Imbalance in the Development and Progression of Bronchial Asthma. Oxid Med Cell Longev. 2021;2021:6692110. PubMed, PubMedCentral, CrossRef
  9. Zhou DY, Du Q, Li RR, Huang M, Zhang Q, Wei GZ. Grape seed proanthocyanidin extract attenuates airway inflammation and hyperresponsiveness in a murine model of asthma by downregulating inducible nitric oxide synthase. Planta Med. 2011;77(14):1575-1581. PubMed, PubMedCentral, CrossRef
  10. Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol Rev. 2004;84(3):731-765. PubMed, CrossRef
  11. Hudkova O, Krysiuk I, Drobot L, Latyshko N. Rhabdomyolysis attenuates activity of semicarbazide sensitive amine oxidase as the marker of nephropathy in diabetic rats. Ukr Biochem J. 2022;94(1):23-32. CrossRef
  12.  Hudkova OO, Krysiuk IP, Kishko TO, Popova NM, Drobot LB, Latyshko NV. Semicarbazide diminishes the signs of bleomycin-induced pulmonary fibrosis in rats. Ukr Biochem J. 2021;93(5):72-81. CrossRef
  13. Farah CS, King GG, Brown NJ, Downie SR, Kermode JA, Hardaker KM, Peters MJ, Berend N, Salome CM. The role of the small airways in the clinical expression of asthma in adults. J Allergy Clin Immunol. 2012;129(2):381-387. PubMed, CrossRef
  14. Ueda T, Niimi A, Matsumoto H, Takemura M, Hirai T, Yamaguchi M, Matsuoka H, Jinnai M, Muro S, Chin K, Mishima M. Role of small airways in asthma: investigation using high-resolution computed tomography. J Allergy Clin Immunol. 2006;118(5):1019-1025. PubMed, CrossRef
  15. Cardiff RD, Miller CH, Munn RJ. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc. 2014;2014(6):655-658. PubMed, CrossRef
  16. Avtandilov GG. Problems of pathogenesis and pathological diagnosis of diseases in the aspects of morphometry. M.: Medicine, 1984. 288 p. (In Russian).
  17. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-254. PubMed, CrossRef
  18. Almohawes ZN, Alruhaimi HS. Effect of Lavandula dentata extract on Ovalbumin-induced Asthma in Male Guinea Pigs. Braz J Biol. 2020;80(1):87-96. PubMed, CrossRef
  19. Laboratory Animal Medicine. (Third Edition, ed. By Fox GJ, Otto GM, Whary MT, Andersen LC, Pritchen-Corning KT). Academic Press. 2015, 1750 p. CrossRef
  20. Lambrecht BN, Hammad H, Fahy JV. The Cytokines of Asthma. Immunity. 2019;50(4):975-991. PubMed, CrossRef
  21. Prado CM Martins MA, Tibério IFLC. Nitric oxide in asthma physiopathology. ISRN Allergy. 2011;2011:832560. PubMed, PubMedCentral, CrossRef
  22. Cho YS, Moon HB. The role of oxidative stress in the pathogenesis of asthma. Allergy Asthma Immunol Res. 2010;2(3):183-187. PubMed, PubMedCentral, CrossRef
  23. Allergy Essentials. (Second Edition, ed by O’Hehir RE, Holgate ST, Hershey GKK, Sheikh A). Elsevier Inc, 2022. 323 p. CrossRef
  24. Sánchez-Jiménez F, Ruiz-Pérez MV, Urdiales JL, Medina MA. Pharmacological potential of biogenic amine-polyamine interactions beyond neurotransmission. Br J Pharmacol. 2013;170(1):4-16. PubMed, PubMedCentral, CrossRef
  25. Masini E, Bani D, Marzocca C, Mateescu MA, Mannaioni PF, Federico R, Mondovì B. Pea seedling histaminase as a novel therapeutic approach to anaphylactic and inflammatory disorders. A plant histaminase in allergic asthma and ischemic shock. Sci World J. 2007;7:888-902. PubMed, PubMedCentral, CrossRef
  26. Li H, Du S, Niu P, Gu X, Wang J, Zhao Y. Vascular Adhesion Protein-1 (VAP-1)/Semicarbazide-Sensitive Amine Oxidase (SSAO): A Potential Therapeutic Target for Atherosclerotic Cardiovascular Diseases. Front Pharmacol. 2021;12:679707. PubMed, PubMedCentral, CrossRef
  27. Zibadi S, Vazquez R , Moore D, Larson DF, Watson RR. Myocardial lysyl oxidase regulation of cardiac remodeling in a murine model of diet-induced metabolic syndrome. Am J Physiol Heart Circ Physiol. 2009;297(3):H976-H982. PubMed, PubMedCentral, CrossRef
  28. Li S, Yang X, Li W, Li J, Su X, Chen L, Yan G. N-acetylcysteine downregulation of lysyl oxidase activity alleviating bleomycin-induced pulmonary fibrosis in rats. Respiration. 2012;84(6):509-517. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.