Ukr.Biochem.J. 2023; Volume 95, Issue 1, Jan-Feb, pp. 64-72


Activity of respiratory chain cytochrome complexes and cytochromes content in the rat kidney mitochondria under different nutrients content in a diet

H. P. Kopylchuk, O. M. Voloshchuk*

Educational and Scientific Institute of Biology, Chemistry and Natural Resources,
Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine;

Received: 07 February 2023; Revised: 17 March 2023;
Accepted: 13 April 2023; Available on-line: 27 April 2023

An important role in ensuring the functioning of the respiratory chain belongs to the cytochrome part, which includes complexes III (ubiquinol-cytochrome c oxidoreductase) and IV (cytochrome c oxidase). The key components of these enzymatic complexes are heme-containing cytochromes, the number of which depends on the balance of heme synthesis and catabolism. δ-Aminolevulinate synthase catalyzes the first step of the heme biosynthetic pathway, while heme oxygenase is the key enzyme of heme degradation. It is known that nutritional imbalances drive many risk factors for chronic kidney disease. That is why our research aimed to study the activity of ubiquinol-cytochrome c oxidoreductase and cytochrome oxidase complexes, the level of cytochromes a+a3, b, c, and c1, and the activity of key enzymes of heme metabolism in the mitochondria of rat kidneys under conditions of different content of protein and sucrose in animal diet. The obtained results showed a decreased activity of ubiquinol-cytochrome c oxidoreductase and cytochrome oxidase complexes and reduced levels of mitochondria cytochromes a+a3, b, c, and c1 in the kidney mitochondria under the conditions of nutrient imbalance, with the most pronounced changes found in animals kept on a low-protein/high-sucrose diet. A decrease in δ-aminolevulinate synthase activity with a simultaneous 2-fold increase in heme oxygenase activity was found in kidney mitochondria of animals kept on a low-protein/high-sucrose diet compared to those kept on full-value diet indicating an intensification of heme catabolism along with inhibition of its synthesis. The obtained results testify the energy imbalance under the conditions of low-protein/high-sucrose which in turn can lead to the progression of kidney injury.

Keywords: , , , , ,


  1. Naber T, Purohit S. Chronic Kidney Disease: Role of Diet for a Reduction in the Severity of the Disease. Nutrients. 2021;13(9):3277. PubMed, PubMedCentral, CrossRef
  2. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095-2128. PubMed, CrossRef
  3. Hallan S, Sharma K. The Role of Mitochondria in Diabetic Kidney Disease. Curr Diab Rep. 2016;16(7):61. PubMed, CrossRef
  4. Le Couteur DG, Solon-Biet SM, Parker BL, Pulpitel T, Brandon AE, Hunt NJ, Wali JA, Gokarn R, Senior AM, Cooney GJ, Raubenheimer D, Cogger VC, James DE, Simpson SJ. Nutritional reprogramming of mouse liver proteome is dampened by metformin, resveratrol, and rapamycin. Cell Metab. 2021;33(12):2367-2379.e4. PubMed, CrossRef
  5. Fotheringham AK, Solon-Biet SM, Bielefeldt-Ohmann H, McCarthy DA, McMahon AC, Ruohonen K, Li I, Sullivan MA, Whiddett RO, Borg DJ, Cogger VC, Ballard WO, Turner N, Melvin RG, Raubenheimer D, Le Couteur DG, Simpson SJ, Forbes JM. Kidney disease risk factors do not explain impacts of low dietary protein on kidney function and structure. iScience. 2021;24(11):103308. PubMed, PubMedCentral, CrossRef
  6. Nam KH, An SY, Joo YS, Lee S, Yun H-R, Jhee JH, Han SH, Yoo T-H, Kang S-W, Park JT. Carbohydrate-Rich Diet Is Associated with Increased Risk of Incident Chronic Kidney Disease in Non-Diabetic Subjects. J Clin Med. 2019;8(6):793. PubMed, PubMedCentral, CrossRef
  7. Mahajan MS, Upasani CD, Upaganlawar AB, Gulecha VS. Renoprotective effect of co-enzyme Q10 and N-acetylcysteine on streptozotocin-induced diabetic nephropathy in rats. Int J Diabetes Clin Res. 2020;7(2):1-12. CrossRef
  8. Ptilovanciv EON, Fernandes GS, Teixeira LC, Reis LA, Pessoa EA, Convento MB, Simões MJ, Albertoni GA, Schor N, Borges FT. Heme oxygenase 1 improves glucoses metabolism and kidney histological alterations in diabetic rats. Diabetol Metab Syndr. 2013;5(1):3. PubMed, PubMedCentral, CrossRef
  9. Amorim RG, Guedes GDS, Vasconcelos SML, Santos JCF. Kidney Disease in Diabetes Mellitus: Cross-Linking between Hyperglycemia, Redox Imbalance and Inflammation. Arq Bras Cardiol. 2019;112(5):577-587. PubMed, PubMedCentral, CrossRef
  10. Lagranha CJ, Fiorino P, Casarini DE, Schaan BD, Irigoyen MC. Molecular bases of diabetic nephropathy. Arq Bras Endocrinol Metabol. 2007;51(6):901-912. PubMed, CrossRef
  11. Donate-Correa J, Martín-Núñez E, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. Inflammatory cytokines in diabetic nephropathy. J Diabetes Res. 2015;2015:948417. PubMed, PubMedCentral, CrossRef
  12. Munusamy S, Saba H, Mitchell T, Megyesi JK, Brock RW, MacMillan-Crow LA. Alteration of renal respiratory Complex-III during experimental type-1 diabetes. BMC Endocr Disord. 2009;9:2. PubMed, PubMedCentral, CrossRef
  13. Katyare SS, Satav JG. Effect of streptozotocin-induced diabetes on oxidative energy metabolism in rat kidney mitochondria. A comparative study of early and late effects. Diabetes Obes Metab. 2005;7(5):555-562. PubMed, CrossRef
  14. Mise K, Galvan DL, Danesh FR. Shaping Up Mitochondria in Diabetic Nephropathy. Kidney360. 2020;1(9):982-992. PubMed, PubMedCentral, CrossRef
  15. Swenson SA, Moore CM, Marcero JR, Medlock AE, Reddi AR, Khalimonchuk O. From Synthesis to Utilization: The Ins and Outs of Mitochondrial Heme. Cells. 2020;9(3):579. PubMed, PubMedCentral, CrossRef
  16. Bailey HJ, Bezerra GA, Marcero JR, Padhi S, Foster WR, Rembeza E, Roy A, Bishop DF, Desnick RJ, Bulusu G, Dailey HA Jr, Yue WW. Human aminolevulinate synthase structure reveals a eukaryotic-specific autoinhibitory loop regulating substrate binding and product release. Nat Commun. 2020;11(1):2813. PubMed, PubMedCentral, CrossRef
  17. Yao H, Peterson AL, Li J, Xu H, Dennery PA. Heme Oxygenase 1 and 2 Differentially Regulate Glucose Metabolism and Adipose Tissue Mitochondrial Respiration: Implications for Metabolic Dysregulation. Int J Mol Sci. 2020;21(19):7123. PubMed, PubMedCentral, CrossRef
  18. Reeves P, Nielsen F, Fahey G. Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993;123(11):1939-1951. PubMed, CrossRef
  19. Voloshchuk OM, Kopylchuk GP. Indicators of the energy supply system in the liver of rats under the conditions of different nutrients content in a diet. Biopolym Cell. 2021;37(4):259-269. CrossRef
  20. Itoh H, Komatsuda A, Ohtani H, Wakui H, Imai H, Sawada K, Otaka M, Ogura M, Suzuki A, Hamada F. Mammalian HSP60 is quickly sorted into the mitochondria under conditions of dehydration. Eur J Biochem. 2002;269(23):5931-5938. PubMed, CrossRef
  21. Claus C, Schönefeld K, Hübner D, Chey S, Reibetanz U, Liebert UG. Activity increase in respiratory chain complexes by rubella virus with marginal induction of oxidative stress. J Virol. 2013;87(15):8481-8492. PubMed, PubMedCentral, CrossRef
  22. Straus W. Colorimetric microdetermination of cytochrome c oxidase. J Biol Chem. 1954;207(2):733-743. PubMed
  23. Sato N, Hagihara B. Spectrophotometric analyses of cytochromes in ascites hepatomas of rats and mice. Cancer Res. 1970;30(7):2061-2068. PubMed
  24. Choi HP, Hong JW, Rhee KH, Sung HC. Cloning, expression, and characterization of 5-aminolevulinic acid synthase from Rhodopseudomonas palustris KUGB306. FEMS Microbiol Lett. 2004;236(2):175-181. PubMed, CrossRef
  25. Converso DP, Taillé C, Carreras MC, Jaitovich A, Poderoso JJ, Boczkowski J. HO-1 is located in liver mitochondria and modulates mitochondrial heme content and metabolism. FASEB J. 2006;20(8):1236-1238. PubMed, CrossRef
  26. Voloshchuk OM, Ursatyy МS, Kopylchuk GP. The NADH-ubiquinone reductase and succinate dehydrogenase activity in the rat kidney mitochondria under the conditions of different protein and sucrose content in the diet. Ukr Biochem J. 2022;94(1):105-113. CrossRef
  27. Voloshchuk OM, Kopylchuk НP. Intensity of free radical processes in rat skeletal muscles under the conditions of different dietary supply with nutrients. Fiziol Zh. 2022;68(4):48-56. (In Ukrainian). CrossRef
  28. Wang Z, Wang Y, Hegg EL. Regulation of the heme A biosynthetic pathway: differential regulation of heme A synthase and heme O synthase in Saccharomyces cerevisiae. J Biol Chem. 2009;284(2):839-847. PubMed, PubMedCentral, CrossRef
  29. Taylor JL, Brown BL. Structural basis for dysregulation of aminolevulinic acid synthase in human disease. J Biol Chem. 2022;298(3):101643. PubMed, PubMedCentral, CrossRef
  30. Handschin C, Lin J, Rhee J, Peyer AK, Chin S, Wu PH, Meyer UA, Spiegelman BM. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha. Cell. 2005;122(4):505-515. PubMed, CrossRef
  31. Morse D, Choi AMK. Heme oxygenase-1: from bench to bedside. Am J Respir Crit Care Med. 2005;172(6):660-670. PubMed, CrossRef
  32. Dong H, Huang H, Yun X, Kim DS, Yue Y, Wu H, Sutter A, Chavin KD, Otterbein LE, Adams DB, Kim YB, Wang H. Bilirubin increases insulin sensitivity in leptin-receptor deficient and diet-induced obese mice through suppression of ER stress and chronic inflammation. Endocrinology. 2014;155(3):818-828. PubMed, PubMedCentral, CrossRef
  33. Lundquist I, Alm P, Salehi A, Henningsson R, Grapengiesser E, Hellman B. Carbon monoxide stimulates insulin release and propagates Ca2+ signals between pancreatic beta-cells. Am J Physiol Endocrinol Metab. 2003;285(5):E1055-E1063. PubMed, CrossRef
  34. Hosick PA, AlAmodi AA, Storm MV, Gousset MU, Pruett BE, Gray W 3rd, Stout J, Stec DE. Chronic carbon monoxide treatment attenuates development of obesity and remodels adipocytes in mice fed a high-fat diet. Int J Obes (Lond). 2014;38(1):132-139. PubMed, PubMedCentral, CrossRef
  35. Kaliman PA, Strelchenko KV, Barannik TV, Nikitchenko IV, Inshina NN, Pavychenko OV, Fylymonenko VP. Metabolism of heme and hemeproteins and some indices of the antioxidant system in rat erythrocytes and tissues under anemia caused by phenylhydrazine. Fiziol Zh. 2003;49(2):66-72. (In Ukrainian).  PubMed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.