Ukr.Biochem.J. 2023; Volume 95, Issue 4, Jul-Aug, pp. 24-34

doi: https://doi.org/10.15407/ubj95.04.024

Nitric oxide cycle activity in rat biceps femoris muscle under conditions of bacterial lipopolysaccharide influence, experimental metabolic syndrome and their combination

O. Ye. Akimov1*, A. O. Mykytenko2, V. O. Kostenko1

1Department of Pathophysiology, Poltava State Medical University, Poltava, Ukraine;
*e-mail: o.akimov@pdmu.edu.ua;
2Department of Biological and Bioorganic Chemistry, Poltava State Medical University, Poltava, Ukraine

Received: 22 April 2023; Revised: 05 June 2023;
Accepted: 7 September 2023; Available on-line: 12 September 2023

There is evidence that long-term organism stimulation with bacterial lipopolysaccharides (LPS), which promotes the secretion of pro-inflammatory cytokines and nitric oxide, may play an important role in metabolic syndrome (MetS) development. Changes in NO production under conditions of MetS have different directions and depend on a specific organ. The purpose of this work was to study the production of nitric oxide and its metabolites in the biceps femoris muscle of rats under conditions of lipopolysaccharide stimulation of the organism, metabolic syndrome and their combination. The study was conducted for 60 days on 24 male Wistar rats divided into control, MetS, LPS and LPS+MetS groups. MetS was reproduced by adding 20% fructose solution to food, LPS stimulation was carried out by intraperitoneal injection of S. typhi LPS. It was demonstrated that stimulation of the rat organism with LPS under conditions of experimental metabolic syndrome increased the production of nitric oxide by L-arginine-dependent pathway, but limited metabolic syndrome-induced increase in nitric oxide production by L-arginine-independent pathway, reduced the concentration of S-nitrosothiols, while increasing the concentration of peroxynitrites and nitrites in the biceps femoris muscle of rats.

Keywords: , , , ,


References:

  1. Alkhulaifi F, Darkoh C. Meal Timing, Meal Frequency and Metabolic Syndrome. Nutrients. 2022;14(9):1719. PubMed, PubMedCentral, CrossRef
  2. Apostu A, Malita D, Arnautu SF, Tomescu MC, Gaiță D, Popescu A, Mare R, Gidea R, Arnautu DA. Significant Association between Subclinical Left Cardiac Dysfunction and Liver Stiffness in Metabolic Syndrome Patients with Diabetes Mellitus and Non-Alcoholic Fatty Liver Disease. Medicina (Kaunas). 2023;59(2):328. PubMed, PubMedCentral, CrossRef
  3. Tirandi A, Carbone F, Montecucco F, Liberale L. The role of metabolic syndrome in sudden cardiac death risk: Recent evidence and future directions. Eur J Clin Invest. 2022;52(2):e13693. PubMed, PubMedCentral, CrossRef
  4. Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Hyperuricemia-induced endothelial insulin resistance: the nitric oxide connection. Pflugers Arch. 2022;474(1):83-98. PubMed, CrossRef
  5. Hill MA, Yang Y, Zhang L, Sun Z, Jia G, Parrish AR, Sowers JR. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. 2021;119:154766. PubMed, CrossRef
  6. Salazar-Gómez A, Ontiveros-Rodríguez JC, Pablo-Pérez SS, Vargas-Díaz ME, Garduño-Siciliano L. The potential role of sesquiterpene lactones isolated from medicinal plants in the treatment of the metabolic syndrome – A review. S Afr J Bot. 2020;135:240-251. PubMed, PubMedCentral, CrossRef
  7. Win S, Min RWM, Zhang J, Kanel G, Wanken B, Chen Y, Li M, Wang Y, Suzuki A, Aung FWM, Murray SF, Aghajan M, Than TA, Kaplowitz N. Hepatic Mitochondrial SAB Deletion or Knockdown Alleviates Diet-Induced Metabolic Syndrome, Steatohepatitis, and Hepatic Fibrosis. Hepatology. 2021;74(6):3127-3145. PubMed, PubMedCentral, CrossRef
  8. Klauder J, Henkel J, Vahrenbrink M, Wohlenberg AS, Camargo RG, Püschel GP. Direct and indirect modulation of LPS-induced cytokine production by insulin in human macrophages. Cytokine. 2020;136:155241. PubMed, CrossRef
  9. Mamikutty N, Thent ZC, Sapri SR, Sahruddin NN, Mohd Yusof MR, Haji Suhaimi F. The establishment of metabolic syndrome model by induction of fructose drinking water in male Wistar rats. Biomed Res Int. 2014;2014:263897. PubMed, PubMedCentral, CrossRef
  10. Yelins’ka AM, Akimov OYe, Kostenko VO. Role of AP-1 transcriptional factor in development of oxidative and nitrosative stress in periodontal tissues during systemic inflammatory response. Ukr Biochem J. 2019;91(1):80-85. CrossRef
  11. Mykytenko AO, Akimov OY, Neporada KS. Influence of lipopolysaccharide on the development of oxidative-nitrosative stress in the liver of rats under conditions of chronic alcohol intoxication. Fiziol Zh. 2022;68(2):29-35. CrossRef
  12. Akimov OYe, Kostenko VO. Functioning of nitric oxide cycle in gastric mucosa of rats under excessive combined intake of sodium nitrate and fluoride. Ukr Biochem J. 2016;88(6):70-75. PubMed, CrossRef
  13. El-Kafoury BMA, Bahgat NM, Abdel-Hady EA, Samad AAAE, Shawky MK, Mohamed FA. Impaired metabolic and hepatic functions following subcutaneous lipectomy in adult obese rats. Exp Physiol. 2019;104(11):1661-1677. PubMed, CrossRef
  14. Zhang Y, Wang R, Fu X, Song H. Non-insulin-based insulin resistance indexes in predicting severity for coronary artery disease. Diabetol Metab Syndr. 2022;14(1):191. PubMed, PubMedCentral, CrossRef
  15. Ahmed Mustafa Z, Hamed Ali R, Rostum Ali D, Abdulkarimi R, Abdulkareem NK, Akbari A. The combination of ginger powder and zinc supplement improves the fructose-induced metabolic syndrome in rats by modulating the hepatic expression of NF-κB, mTORC1, PPAR-α SREBP-1c, and Nrf2. J Food Biochem. 2021;45(1):e13546. PubMed, CrossRef
  16. Hayden MR. Overview and New Insights into the Metabolic Syndrome: Risk Factors and Emerging Variables in the Development of Type 2 Diabetes and Cerebrocardiovascular Disease. Medicina (Kaunas). 2023;59(3):561. PubMed, PubMedCentral, CrossRef
  17. Chekalina NI, Kazakov YM, Mamontova TV, Vesnina LE, Kaidashev IP. Resveratrol more effectively than quercetin reduces endothelium degeneration and level of necrosis factor α in patients with coronary artery disease. Wiad Lek. 2016;69(3 pt 2):475-479. PubMed
  18. Savchenko L, Mykytiuk M, Cinato M, Tronchere H, Kunduzova O, Kaidashev I. IL-26 in the induced sputum is associated with the level of systemic inflammation, lung functions and body weight in COPD patients. Int J Chron Obstruct Pulmon Dis. 2018;13:2569-2575. PubMed, PubMedCentral, CrossRef
  19. Alzayadneh EM, Shatanawi A, Caldwell RW, Caldwell RB. Methylglyoxal-Modified Albumin Effects on Endothelial Arginase Enzyme and Vascular Function. Cells. 2023;12(5):795. PubMed, PubMedCentral, CrossRef
  20. Peleli M, Ferreira DMS, Tarnawski L, McCann Haworth S, Xuechen L, Zhuge Z, Newton PT, Massart J, Chagin AS, Olofsson PS, Ruas JL, Weitzberg E, Lundberg JO, Carlström M. Dietary nitrate attenuates high-fat diet-induced obesity via mechanisms involving higher adipocyte respiration and alterations in inflammatory status. Redox Biol. 2020;28:101387. PubMed, PubMedCentral, CrossRef
  21. Yang B, Xin M, Liang S, Xu X, Cai T, Dong L, Wang C, Wang M, Cui Y, Song X, Sun J, Sun W. New insight into the management of renal excretion and hyperuricemia: Potential therapeutic strategies with natural bioactive compounds. Front Pharmacol. 2022;13:1026246. PubMed, PubMedCentral, CrossRef
  22. Akimov OY, Mykytenko AO, Mischenko AV, Kostenko VO. Effect of stimulating organism with bacterial lipopolysaccharide on development of oxidative stress in biceps femoris of rat under modelled metabolic syndrome. Actual Probl Modern Med Bull Ukr Med Stomatol Acad. 2022;22(3-4):148-152. (In Ukrainian). CrossRef
  23. Kowalczyk-Bołtuć J, Wiórkowski K, Bełtowski J. Effect of Exogenous Hydrogen Sulfide and Polysulfide Donors on Insulin Sensitivity of the Adipose Tissue. Biomolecules. 2022;12(5):646. PubMed, PubMedCentral, CrossRef
  24. Berenyiova A, Cebova M, Aydemir BG, Golas S, Majzunova M, Cacanyiova S. Vasoactive Effects of Chronic Treatment with Fructose and Slow-Releasing H2S Donor GYY-4137 in Spontaneously Hypertensive Rats: The Role of Nitroso and Sulfide Signalization. Int J Mol Sci. 2022;23(16):9215. PubMed, PubMedCentral, CrossRef
  25. Wu H, Lin T, Chen Y, Chen F, Zhang S, Pang H, Huang L, Yu C, Wang G, Wu C. Ethanol Extract of Rosa laevigata Michx. Fruit Inhibits Inflammatory Responses through NF-κB/MAPK Signaling Pathways via AMPK Activation in RAW 264.7 Macrophages. Molecules. 2023;28(6):2813. PubMed, PubMedCentral, CrossRef
  26. Mykytenko AO, Akimov OYe, Yeroshenko GA, Neporada KS. Influence of NF-κB on the development of oxidative-nitrosative stress in the liver of rats under conditions of chronic alcohol intoxication. Ukr Biochem J. 2022;94(6):57-66. CrossRef
  27. Jin Y, Nguyen TLL, Myung CS, Heo KS. Ginsenoside Rh1 protects human endothelial cells against lipopolysaccharide-induced inflammatory injury through inhibiting TLR2/4-mediated STAT3, NF-κB, and ER stress signaling pathways. Life Sci. 2022;309:120973. PubMed, CrossRef
  28. Li H, Zhang C, Zhang H, Li H. Xanthine oxidoreductase promotes the progression of colitis-associated colorectal cancer by causing DNA damage and mediating macrophage M1 polarization. Eur J Pharmacol. 2021;906:174270. PubMed, CrossRef
  29. Yang Y, Li S, Qu Y, Wang X, An W, Li Z, Han Z, Qin L. Nitrate partially inhibits lipopolysaccharide-induced inflammation by maintaining mitochondrial function. J Int Med Res. 2020;48(2):300060520902605. PubMed, PubMedCentral, CrossRef
  30. Pérez-Torres I, Manzano-Pech L, Guarner-Lans V, Soto ME, Castrejón-Téllez V, Márquez-Velasco R, Vargas-González Á, Martínez-Memije R, Del Valle-Mondragón L, Díaz-Juárez JA, Sánchez-Aguilar M, Torres-Narváez JC. Deodorized Garlic Decreases Oxidative Stress Caused by Lipopolysaccharide in Rat Heart through Hydrogen Sulfide: Preliminary Findings. Int J Mol Sci. 2022;23(20):12529. PubMed, PubMedCentral, CrossRef
  31. Sui C, Wu Y, Zhang R, Zhang T, Zhang Y, Xi J, Ding Y, Wen J, Hu Y. Rutin Inhibits the Progression of Osteoarthritis Through CBS-Mediated RhoA/ROCK Signaling. DNA Cell Biol. 2022;41(6):617-630. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.