Ukr.Biochem.J. 2023; Volume 95, Issue 5, Sep-Oct, pp. 85-97


Gamma-aminobutyric acid modulates antioxidant and osmoprotective systems in seedlings of Triticum aestivum cultivars differing in drought tolerance

Yu. E. Kolupaev1,2,3*, I. V. Shakhov1,3, A. I. Kokorev1,
L. Kryvoruchko2, T. O. Yastreb1,4

1Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv;
2Poltava State Agrarian University, Poltava, Ukraine;
3State Biotechnological University, Kharkiv, Ukraine;
4Crop Research Institute, Prague, Czech Republic

Received: 28 August 2023; Revised: 30 September 2023;
Accepted: 27 October 2023; Available on-line: 06 November 2023

The stress-protective effects of plant neurotransmitters, including gamma-aminobutyric acid (GABA) have been intensively examined in recent years. However, studies on the GABA influence on stress protective systems in bread wheat cultivars with different drought adaptation strategies are still lacking. The aim of this work was to estimate the GABA effect on the state of antioxidant and osmoprotective systems in etiolated seedlings of two wheat cultivars differing significantly in drought tolerance, namely Doskonala (non-drought-resistant) and Tobak (drought-resistant) under model drought induced by PEG 6000. Two-day-old seedlings were transferred to 15% PEG 6000 and incubated for two days in the absence or presence of GABA. Treatment with 0.1 and 0.5 mM GABA significantly reduced the growth-inhibitory effect of PEG 6000 on the roots and shoots of both cultivars, but to a greater extent on those of non-resistant Doskonala. It was shown that GABA treatment reduced drought-induced accumulation of H2O2 and MDA, stabilized SOD and GPX activity, the level of sugars, anthocyanins and flavonoids in seedlings of both cultivars. Meanwhile GABA treatment enhanced the stress-induced increase in proline content in the Doskonala cultivar, but decreased it in the Tobak, completely prevented stress induced decrease in anthocyanins and flavonoids level in the Tobak and only partially in Doskonala cultivar. Thus, the stabilization of the stress-protective systems functioning in the wheat cultivars and variety-dependent differences in response to GABA were revealed.

Keywords: , , , , , ,


  1. Adel S, Carels N. Plant Tolerance to Drought Stress with Emphasis on Wheat. Plants (Basel). 2023;12(11):2170. PubMed, PubMedCentral, CrossRef
  2. Andleeb T, Shah T, Nawaz R, Munir I, Munsif F, Jalal A. QTL mapping for drought stress tolerance in plants. In: Hasanuzzaman M, Tanveer M. (Eds.) Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants. Springer: Cham, Switzerland; 2020. p. 383-403. CrossRef
  3. Khan S, Anwar S, Yu S, Sun M, Yang Z, Gao ZQ. Development of Drought-Tolerant Transgenic Wheat: Achievements and Limitations. Int J Mol Sci. 2019;20(13):3350. PubMed, PubMedCentral, CrossRef
  4. Punchkhon C, Plaimas K, Buaboocha T, Siangliw JL, Toojinda T, Comai L, De Diego N, Spíchal L, Chadchawan S. Drought-Tolerance Gene Identification Using Genome Comparison and Co-Expression Network Analysis of Chromosome Substitution Lines in Rice. Genes (Basel). 2020;11(10):1197. PubMed, PubMedCentral, CrossRef
  5. Kosakivska IV, Vedenicheva NP, Babenko LM, Voytenko LV, Romanenko KO, Vasyuk VA. Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. Mol Biol Rep. 2022;49(1):617-628. PubMed, CrossRef
  6. Kavulych Y, Kobyletska M, Romanyuk N, Terek O. Stress-protective and regulatory properties of salicylic acid and prospects of its use in plant production. Studia Biologica. 2023;17(2):173-200. CrossRef
  7. Kolupaev YE, Yastreb TO, Dmitriev AP. Signal Mediators in the Implementation of Jasmonic Acid’s Protective Effect on Plants under Abiotic Stresses. Plants (Basel). 2023;12(14):2631. PubMed, PubMedCentral, CrossRef
  8. Akula R, Mukherjee S. New insights on neurotransmitters signaling mechanisms in plants. Plant Signal Behav. 2020;15(6):1737450. PubMed, PubMedCentral, CrossRef
  9. Kolupaev YE, Karpets YV, Shkliarevskyi MA, Yastreb TO, Plohovska SH, Yemets AI, Blume YB. Gasotransmitters in plants: Mechanisms of participation in adaptive responses. Open Agricult J. 2022;16(Suppl-1, M5): e187433152207050. CrossRef
  10. Jurkonienė S, Mockevičiūtė R, Gavelienė V, Šveikauskas V, Zareyan M, Jankovska-Bortkevič E, Jankauskienė J, Žalnierius T, Kozeko L. Proline Enhances Resistance and Recovery of Oilseed Rape after a Simulated Prolonged Drought. Plants (Basel). 2023;12(14):2718. PubMed, PubMedCentral, CrossRef
  11. Seifikalhor M, Aliniaeifard S, Hassani B, Niknam V, Lastochkina O. Diverse role of γ-aminobutyric acid in dynamic plant cell responses. Plant Cell Rep. 2019;38(8):847-867. PubMed, CrossRef
  12. Bouché N, Fait A, Bouchez D, Møller SG, Fromm H. Mitochondrial succinic-semialdehyde dehydrogenase of the gamma-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc Natl Acad Sci USA. 2003;100(11):6843-6848. PubMed, PubMedCentral, CrossRef
  13. Bor M, Turkan I. Is there a room for GABA in ROS and RNS signalling? Environ Exp Bot. 2019;161:67-73.  CrossRef
  14. Ramesh SA, Tyerman SD, Gilliham M, Xu B. γ-Aminobutyric acid (GABA) signalling in plants. Cell Mol Life Sci. 2017;74(9):1577-1603. PubMed, CrossRef
  15. Suhel M, Husain T, Pandey A, Singh S, Dubey NK, Prasad SM, Singh VP. An appraisal of ancient molecule GABA in abiotic stress tolerance in plants, and its crosstalk with other signaling molecules. J Plant Growth Regul. 2023;42(2):614-629. CrossRef
  16. Jin X, Liu T, Xu J, Gao Z, Hu X. Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis. BMC Plant Biol. 2019;19(1):48. PubMed, PubMedCentral, CrossRef
  17. Sheteiwy MS, Shao H, Qi W, Hamoud YA, Shaghaleh H, Khan NU, Yang R, Tang B. GABA-Alleviated Oxidative Injury Induced by Salinity, Osmotic Stress and their Combination by Regulating Cellular and Molecular Signals in Rice. Int J Mol Sci. 2019;20(22):5709. PubMed, PubMedCentral, CrossRef
  18. Shelp BJ, Aghdam MS, Flaherty EJ. γ-Aminobutyrate (GABA) Regulated Plant Defense: Mechanisms and Opportunities. Plants (Basel). 2021;10(9):1939. PubMed, PubMedCentral, CrossRef
  19. Kolupaev YE, Yastreb TO, Ryabchun NI, Kokorev AI, Kolomatska VP, Dmitriev AP. Redox homeostasis of cereals during acclimation to drought. Theor Exp Plant Physiol. 2023;35(2):133-168. CrossRef
  20. Xu B, Long Y, Feng X, Zhu X, Sai N, Chirkova L, Betts A, Herrmann J, Edwards EJ, Okamoto M, Hedrich R, Gilliham M. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nat Commun. 2021;12(1):1952. PubMed, PubMedCentral, CrossRef
  21. Yong B, Xie H, Li Z, Li YP, Zhang Y, Nie G, Zhang XQ, Ma X, Huang LK, Yan YH, Peng Y. Exogenous Application of GABA Improves PEG-Induced Drought Tolerance Positively Associated with GABA-Shunt, Polyamines, and Proline Metabolism in White Clover. Front Physiol. 2017;8:1107. PubMed, PubMedCentral, CrossRef
  22. Tang M, Li Z, Luo L, Cheng B, Zhang Y, Zeng W, Peng Y. Nitric Oxide Signal, Nitrogen Metabolism, and Water Balance Affected by γ-Aminobutyric Acid (GABA) in Relation to Enhanced Tolerance to Water Stress in Creeping Bentgrass. Int J Mol Sci. 2020;21(20):7460. PubMed, PubMedCentral, CrossRef
  23. Abd El-Gawad HG, Mukherjee S, Farag R, Abd Elbar OH, Hikal M, Abou El-Yazied A, Abd Elhady SA, Helal N, ElKelish A, El Nahhas N, Azab E, Ismail IA, Mbarki S, Ibrahim MFM. Exogenous γ-aminobutyric acid (GABA)-induced signaling events and field performance associated with mitigation of drought stress in Phaseolus vulgaris L. Plant Signal Behav. 2021;16(2):1853384. PubMed, PubMedCentral, CrossRef
  24. Farooq M, Nawaz A, Chaudhry MAM, Indrasti R, Rehman A. Improving resistance against terminal drought in bread wheat by exogenous application of proline and gamma-aminobutyric acid. J Agron Crop Sci. 2017;203(6):464-472. CrossRef
  25. Zhao Q, Ma Y, Huang X, Song L, Li N, Qiao M, Li T, Hai D, Cheng Y. GABA Application Enhances Drought Stress Tolerance in Wheat Seedlings (Triticum aestivum L.). Plants (Basel). 2023;12(13):2495. PubMed, PubMedCentral, CrossRef
  26. Kolupaev YE, Yastreb TO, Ryabchun NI, Kuzmyshyna NV, Shkliarevskyi MA, Barabolia O, Pysarenko VM. Response of Triticum aestivum seedlings of different ecological and geographical origin to heat and drought: relationship with resistance to oxidative stress and osmolyte accumulation. Agricult Forest. 2023;69(2):83-99. CrossRef
  27. Urban O, Hlaváčová M, Klem K, Novotná K, Rapantová B, Smutná P, Horáková V, Hlavinka P, Škarpa P, Trnka M. Combined effects of drought and high temperature on photosynthetic characteristics in four winter wheat genotypes. Field Crops Res. 2018;223:137-149. CrossRef
  28. Tambussi EA, Nogués S, Araus JL. Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta. 2005;221(3):446-458. PubMed, CrossRef
  29. Sagisaka S. The Occurrence of Peroxide in a Perennial Plant, Populus gelrica. Plant Physiol. 1976;57(2):308-309. PubMed, PubMedCentral, CrossRef
  30. Kolupaev YuE, Horielova EI, Yastreb TO, Ryabchun NI. State of antioxidant system in triticale seedlings at cold hardening of varieties of different frost resistance. Cereal Res Commun. 2020;48(2):165-171. CrossRef
  31. Yastreb TO, Kolupaev YuE, Kokorev AI, Маkaova BE, Ryabchun NI, Zmiievska OA, Pospielova GD. Indices of antioxidant and osmoprotective systems in seedlings of winter wheat cultivars with different frost resistance. Ukr Biochem J. 2023;95(1):73-84. CrossRef
  32. Zhao K, Fan H, Zhou S, Song J. Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under iso-osmotic salt and water stress. Plant Sci. 2003;165(4):837-844. CrossRef
  33. Bobo-García G, Davidov-Pardo G, Arroqui C, Vírseda P, Marín-Arroyo MR, Navarro M. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J Sci Food Agric. 2015;95(1):204-209. PubMed, CrossRef
  34. Nogués S, Baker NR. Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J Exp Bot. 2000;51(348):1309-1317. PubMed, CrossRef
  35. Ullah A, Ali I, Noor J, Zeng F, Bawazeer S, Eldin SM, Asghar MA, Javed HH, Saleem K, Ullah S, Ali H. Exogenous γ-aminobutyric acid (GABA) mitigated salinity-induced impairments in mungbean plants by regulating their nitrogen metabolism and antioxidant potential. Front Plant Sci. 2023;13:1081188. PubMed, PubMedCentral, CrossRef
  36. Salah A, Zhan M, Cao C, Han Y, Ling L, Liu Z, Li P, Ye M, Jiang Y. γ-Aminobutyric Acid Promotes Chloroplast Ultrastructure, Antioxidant Capacity, and Growth of Waterlogged Maize Seedlings. Sci Rep. 2019;9(1):484. PubMed, PubMedCentral, CrossRef
  37. Nayyar H, Kaur H, Kaur S, Singh R. γ-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants. J Plant Growth Regul. 2014;33(2):408-419. CrossRef
  38. Shi SQ, Shi Z, Jiang ZP, Qi LW, Sun XM, Li CX, Liu JF, Xiao WF, Zhang SG. Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production. Plant Cell Environ. 2010;33(2):149-162. PubMed, CrossRef
  39. Li MF, Guo SJ, Yang XH, Meng QW, Wei XJ. Exogenous gamma-aminobutyric acid increases salt tolerance of wheat by improving photosynthesis and enhancing activities of antioxidant enzymes. Biol Plant. 2016;60(1):123-131. CrossRef
  40. 40. Cheng B, Li Z, Liang L, Cao Y, Zeng W, Zhang X, Ma X, Huang L, Nie G, Liu W, Peng Y. The γ-Aminobutyric Acid (GABA) Alleviates Salt Stress Damage during Seeds Germination of White Clover Associated with Na⁺/K⁺ Transportation, Dehydrins Accumulation, and Stress-Related Genes Expression in White Clover. Int J Mol Sci. 2018;19(9):2520. PubMed, PubMedCentral, CrossRef
  41. Krishnan S, Laskowski K, Shukla V, Merewitz EB. Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ-aminobutyric acid on Perennial Ryegrass. J Amer Soc Hort Sci. 2013;138(5):358-366. CrossRef
  42. Nasirzadeh L, Sorkhilaleloo B, Hervan EM, Fatehi F. Changes in antioxidant enzyme activities and gene expression profiles under drought stress in tolerant, intermediate, and susceptible wheat genotypes. Cereal Res Commun. 2021;49(1):83-89. CrossRef
  43. Zhou M, Hassan MJ, Peng Y, Liu L, Liu W, Zhang Y, Li Z. γ-Aminobutyric Acid (GABA) Priming Improves Seed Germination and Seedling Stress Tolerance Associated With Enhanced Antioxidant Metabolism, DREB Expression, and Dehydrin Accumulation in White Clover Under Water Stress. Front Plant Sci. 2021;12:776939. PubMed, PubMedCentral, CrossRef
  44. Jalil SU, Ansari MI. Physiological role of gamma-aminobutyric acid in salt stress tolerance. In: Hasanuzzaman M, Tanveer M, eds. Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants. Springer, Cham., 2020. p. 337-350.  CrossRef
  45. Kolupaev YuE, Karpets YuV, Yastreb TO, Shemet SA, Bhardwaj R. Antioxidant system and plant cross-adaptation against metal excess and other environmental stressors. Eds. Landi M, Shemet SA, Fedenko VS. In: Metal toxicity in higher plants. New York: Nova Science Publishers, 2020. p. 21-66.
  46. Zeng W, Hassan MJ, Kanga D, Peng Y, Li Z. Photosynthetic maintenance and heat shock protein accumulation relating to γ-aminobutyric acid (GABA)-regulated heat tolerance in creeping bentgrass (Agrostis stolonifera). South Afr J Bot. 2021;141:405-413. CrossRef
  47. Li Z, Tang M, Hassan MJ, Zhang Y, Han L, Peng Y. Adaptability to High Temperature and Stay-Green Genotypes Associated With Variations in Antioxidant, Chlorophyll Metabolism, and γ-Aminobutyric Acid Accumulation in Creeping Bentgrass Species. Front Plant Sci. 2021;12:750728. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.