Ukr.Biochem.J. 2023; Volume 95, Issue 2, Mar-Apr, pp. 5-23

doi: https://doi.org/10.15407/ubj95.02.005

Immunological mechanisms of increased susceptibility to COVID-19 disease and its severe course in patients with diabetes mellitus type 2 and obesity

K. P. Zak1, M. D. Tronko1, S. V. Komisarenko2*

1V. P. Komisarenko Institute of Endocrinology and Metabolism,
National Academy of Medical Sciences of Ukraine, Kyiv;
2Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
*e-mail: svk@biochem.kiev.ua

Received: 28 April 2023; Revised: 28 May 2023;
Accepted: 05 June 2023; Available on-line: 20 June 2023

In this review, we analyze and summarize literature data and the results of our own research related to the immunity status of patients with type 2 diabetes mellitus (T2D) and those T2D patients who were infected with the SARS-CoV-2 virus. It was shown that in the blood plasma of T2D patients, especially those with ele­vated BMI, the level and ultrastructure of the main cellular components of natural immunity – neutrophils and monocytes – were affected accompanied by high levels of proinflammatory cytokines (IL-1β, IL-6, IL-17 and TNF-α). It was suggested that the increased susceptibility of T2D patients to SARS-CoV-2 infection is primarily­ due to a weakening of the innate immune defense against pathogens, whereas in T2D patients who have COVID-19, adaptive T-cell immunity disorders accompanied by a cytokine storm prevail. It was concluded that hyperinflammation in T2D+COVID19 patients is the result of enhancement of already existing before SARS-CoV-2 infection T2D-caused disorders of innate and adaptive immunity, in the mechanism of which cytokines and chemokines play a significant role.

Keywords: , , , , ,


References:

  1. WHO Coronavirus (COVID-19) Dashboard https://covid19.who.int/table.
  2. Mauvais-Jarvis F. Aging, Male Sex, Obesity, and Metabolic Inflammation Create the Perfect Storm for COVID-19. Diabetes. 2020;69(9):1857-1863. PubMed, PubMedCentral, CrossRef
  3. Shin JA, Oh S, Jeong JM. The potential of BEN815 as an anti-inflammatory, antiviral and antioxidant agent for the treatment of COVID-19. Phytomed Plus. 2021;1(4):100058. PubMed, PubMedCentral, CrossRef
  4. Koh HE, van Vliet S, Pietka TA, Meyer GA, Razani B, Laforest R, Gropler RJ, Mittendorfer B. Subcutaneous Adipose Tissue Metabolic Function and Insulin Sensitivity in People With Obesity. Diabetes. 2021;70(10):2225-2236. PubMed, PubMedCentral, CrossRef
  5. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, Barnaby DP, Becker LB, Chelico JD, Cohen SL, Cookingham J, Coppa K, Diefenbach MA, Dominello AJ, Duer-Hefele J, Falzon L, Gitlin J, Hajizadeh N, Harvin TG, Hirschwerk DA, Kim EJ, Kozel ZM, Marrast LM, Mogavero JN, Osorio GA, Qiu M, Zanos TP. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323(20):2052-2059. PubMed, PubMedCentral, CrossRef
  6. Seiglie J, Platt J, Cromer SJ, Bunda B, Foulkes AS, Bassett IV, Hsu J, Meigs JB, Leong A, Putman MS, Triant VA, Wexler DJ, Manne-Goehler J. Diabetes as a Risk Factor for Poor Early Outcomes in Patients Hospitalized With COVID-19. Diabetes Care. 2020;43(12):2938-2944. PubMed, PubMedCentral, CrossRef
  7. Mirani M, Favacchio G, Carrone F, Betella N, Biamonte E, Morenghi E, Mazziotti G, Lania AG. Impact of Comorbidities and Glycemia at Admission and Dipeptidyl Peptidase 4 Inhibitors in Patients With Type 2 Diabetes With COVID-19: A Case Series From an Academic Hospital in Lombardy, Italy. Diabetes Care. 2020;43(12):3042-3049. PubMed, CrossRef
  8. Shi Q, Zhang X, Jiang F, Zhang X, Hu N, Bimu C, Feng J, Yan S, Guan Y, Xu D, He G, Chen C, Xiong X, Liu L, Li H, Tao J, Peng Z, Wang W. Clinical Characteristics and Risk Factors for Mortality of COVID-19 Patients With Diabetes in Wuhan, China: A Two-Center, Retrospective Study. Diabetes Care. 2020;43(7):1382-1391. PubMed, CrossRef
  9. Tate J, Knuiman M, Davis WA, Davis TME, Bruce DG. A comparison of obesity indices in relation to mortality in type 2 diabetes: the Fremantle Diabetes Study. Diabetologia. 2020;63(3):528-536. PubMed, CrossRef
  10. Shin J, Toyoda S, Nishitani S, Onodera T, Fukuda S, Kita S, Fukuhara A, Shimomura I. SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in the lung, liver, adipose tissue, and pancreatic cells via IRF1. Metabolism. 2022;133:155236. PubMed, PubMedCentral, CrossRef
  11. Zak KP, Kondratskaia IN, Mel’nichenko SV, Popova VV. Circulating interleukin-16 in blood of patients with metabolic syndrome and type 2 diabetes mellitus. Lik Sprava. 2007;(5-6):46-49. (In Russian). PubMed
  12. Zak KP, Mankovsky BM, Melnichenko SV, Kondratska IM, Popova VV, Sayenko YaA, Semionova TA, Korpacheva-Zinych OV, Tronko KM, Furmanova OV. Immunity in patients with type 2 diabetes mellitus in complex with concomitant metabolic syndrome/obesity. Communication 2. Role of adipocytokines (interleukin-6, tumor necrosis factor alpha, leptin and adiponectin). Endokrynologiya. 2013;18(2):26-32.
  13. Zak KP, Tronko ND, Popova VV, Butenko AK. Diabetes. Immunity. Cytokines. Kyiv: Knyha plyus; 2015. 485 p.
  14. Zak KP, Popova VV, Orlenko VL, Furmanova OV, Tronko ND. Cytokines in the blood of patients with type 2 diabetes mellitus depending on the level of overweight/obesity (literature review and own data). Int J Endocrinol. 2021;17(7):534-551. CrossRef
  15. Furmanova OV, Zak KP, Popova V, Tronko MD. Blood leukocyte composition and neutrophil to lymphocyte ratio in patients with newly diagnosed type 2 diabetes mellitus depending on the degree of overweight/obesity. Int J Endocrinol. 2020;16(7):526-533. (In Russian). CrossRef
  16. Furmanova OV, Kulikovska AV, Popova VV, Zak KP, Tronko MD. Immunophenotype of blood lymphocytes in patients with type 2 diabetes and normal body weight and obesity. Int J Endocrinol. 2021;17(2):108–115. (In Ukrainian). CrossRef
  17. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. PubMed, PubMedCentral, CrossRef
  18. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-848. PubMed, PubMedCentral, CrossRef
  19. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-1034. PubMed, PubMedCentral, CrossRef
  20. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang X, Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J, Ning Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620-2629. PubMed, PubMedCentral, CrossRef
  21. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. PubMed, PubMedCentral, CrossRef
  22. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Zhou X, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-943. PubMed, PubMedCentral, CrossRef
  23. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, PY Chen 1 , Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, J Yang Liu 1 , Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720. PubMed, PubMedCentral, CrossRef
  24. Xu B, Fan CY, Wang AL, Zou YL, Yu YH, He C, Xia WG, Zhang JX, Miao Q. Suppressed T cell-mediated immunity in patients with COVID-19: A clinical retrospective study in Wuhan, China. J Infect. 2020;81(1):e51-e60. PubMed, PubMedCentral, CrossRef
  25. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W, Tian DS. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-768. PubMed, PubMedCentral, CrossRef
  26. McGonagle D, Sharif K, O’Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19(6):102537. PubMed, PubMedCentral, CrossRef
  27. Liu BM, Martins TB, Peterson LK, Hill HR. Clinical significance of measuring serum cytokine levels as inflammatory biomarkers in adult and pediatric COVID-19 cases: A review. Cytokine. 2021;142:155478. PubMed, PubMedCentral, CrossRef
  28. Fernandez-Botran R, Furmanek S, Ambadapoodi RS, Expósito González E, Cahill M, Carrico R, Akca O, Ramírez JA. Association and predictive value of biomarkers with severe outcomes in hospitalized patients with SARS-CoV-2 infection. Cytokine. 2022;149:155755. PubMed, PubMedCentral, CrossRef
  29. Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, Hoogeveen R, Folsom AR, Heiss G. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003;52(7):1799-1805. PubMed, CrossRef
  30. Donath MY. Multiple benefits of targeting inflammation in the treatment of type 2 diabetes. Diabetologia. 2016;59(4):679-682. PubMed, CrossRef
  31. Ratter-Rieck JM, Roden M, Herder C. Diabetes and climate change: current evidence and implications for people with diabetes, clinicians and policy stakeholders. Diabetologia. 2023;66(6):1003-1015. PubMed, PubMedCentral, CrossRef
  32. Dandona P, Ghanim H. Diabetes, Obesity, COVID-19, Insulin, and Other Antidiabetes Drugs. Diabetes Care. 2021;44(9):1929-1933. PubMed, CrossRef
  33. Blüher M, Fasshauer M, Tönjes A, Kratzsch J, Schön MR, Paschke R. Association of interleukin-6, C-reactive protein, interleukin-10 and adiponectin plasma concentrations with measures of obesity, insulin sensitivity and glucose metabolism. Exp Clin Endocrinol Diabetes. 2005;113(9):534-537. PubMed, CrossRef
  34. Hu FB, Meigs JB, Li TY, Rifai N, Manson JE. Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes. 2004;53(3):693-700. PubMed, CrossRef
  35. Shitole SG, Biggs ML, Reiner AP, Mukamal KJ, Djoussé L, Ix JH, Barzilay JI, Tracy RP, Siscovick D, Kizer JR. Soluble CD14 and CD14 Variants, Other Inflammatory Markers, and Glucose Dysregulation in Older Adults: The Cardiovascular Health Study. Diabetes Care. 2019;42(11):2075-2082. PubMed, PubMedCentral, CrossRef
  36. Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H,Pfeiffer AFH. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52(3):812-817. PubMed, CrossRef
  37. Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356(15):1517-1526. PubMed, CrossRef
  38. Herder C, Peltonen M, Koenig W, Sütfels K, Lindström J, Martin S, Ilanne-Parikka P, Eriksson J G, Aunola S, Keinänen-Kiukaanniemi S, Valle T T, Uusitupa M, Kolb H, Tuomilehto J. Anti-inflammatory effect of lifestyle changes in the Finnish Diabetes Prevention Study. Diabetologia. 2009;52(3):433-442.PubMed, CrossRef
  39. Wannamethee SG, Papacosta O, Lawlor DA, Whincup PH, Lowe GD, Ebrahim S, Sattar N. Do women exhibit greater differences in established and novel risk factors between diabetes and non-diabetes than men? The British Regional Heart Study and British Women’s Heart Health Study. Diabetologia. 2012;55(1):80-87. PubMed, CrossRef
  40. Banerjee M, Saxena M. Interleukin-1 (IL-1) family of cytokines: role in type 2 diabetes. Clin Chim Acta. 2012;413(15-16):1163-1170. PubMed, CrossRef
  41. Wang X, Bao W, Liu J, Ouyang YY, Wang D, Rong S, Xiao X, Shan ZL, Zhang Y, Yao P, Liu LG. Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2013;36(1):166-175. PubMed, PubMedCentral, CrossRef
  42. Zak KP, Mankovsky BM, Kondratska IN, Popovа VV, Saenko JA, Lipska OYe, Semionova TA, Afanasyeva VV. Immunity in patients with type 2 diabetes mellitus with concomitant metabolic syndrome/obesity. Communication 1. Composition of blood leukocytes, immunophenotype of lymphocytes, and ultrastructure of neutrophils. Endokrynologia. 2013;18(1): 27-36.
  43. Zak KP, Furmanova OV, Popova VV, Sayenko YaA. The content of pro-inflammatory cytokines IL-1β, IL-6, IL-17A and TNFα in the blood of patients with type 2 diabetes after therapy with metformin. Ukr Biochem J. 2020;92(6):105-112. CrossRef
  44. Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM. The Role of the Autonomic Nervous System in the Pathophysiology of Obesity. Front Physiol. 2017;8:665. PubMed, PubMedCentral, CrossRef
  45. Cartier A, Lemieux I, Almeras N, et al. Visceral obesity and plasma glucose-insulin homeostasis: contributions of IL-6 and TNF-α. Diabetologia. 2007;50(S1):270.
  46. Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280(5):E745-E751. PubMed, CrossRef
  47. Fabbrini E, Cella M, McCartney SA, Fuchs A, Abumrad NA, Pietka TA, Chen Z, Finck BN, Han DH, Magkos F, Conte C, Bradley D, Fraterrigo G, Eagon JC, Patterson BW, Colonna M, Klein S. Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology. 2013;145(2):366-374.e1-3. PubMed, PubMedCentral, CrossRef
  48. Zak KP, Popovа VV. The prediction of type 1 diabetes development and diagnosis of its asymptomatic phase using autoantibodies to human islets of Langerhans long before the onset of the disease. Int J Endocrinol. 2016;(7(79)):11–21. (In Russian). CrossRef
  49. Zak KP, Popova VV, Gruzov MA, Khomenko BM, Afanasyeva VV, Malynovskaya TN, Tronko EN, Saenko YaA, Semionova TA, Kulskovskaya AB. Results of twenty-year studies on immunity at preclinical asymptomatic phase of developing type 1 diabetes in children on the program IPDM: 1. Leukocyte composition and immune phenotype of blood lymphocytes. Endokrinologia. 2017;22(3):201-210.
  50. Lichiardopol R, Popescu LD, Ionescu I, et al. Abdominal obesity in type 1 and type 2 diabetes patients. Diabetologia. 2008;51(Suppl 1):S335.
  51. Kim S, Parks CG, DeRoo LA, Chen H, Taylor JA, Cawthon RM, Sandler DP. Obesity and weight gain in adulthood and telomere length. Cancer Epidemiol Biomarkers Prev. 2009;18(3):816-820. PubMed, PubMedCentral, CrossRef
  52. Cox AR, Chernis N, Bader DA, Saha PK, Masschelin PM, Felix JB, Sharp R, Lian Z, Putluri V, Rajapakshe K, Kim KH, Villareal DT, Armamento-Villareal R, Wu H, Coarfa C, Putluri N, Hartig SM. STAT1 Dissociates Adipose Tissue Inflammation From Insulin Sensitivity in Obesity. Diabetes. 2020;69(12):2630-2641. PubMed, PubMedCentral, CrossRef
  53. Kim JY, Bacha F, Tfayli H, Michaliszyn SF, Yousuf S, Arslanian S. Adipose Tissue Insulin Resistance in Youth on the Spectrum From Normal Weight to Obese and From Normal Glucose Tolerance to Impaired Glucose Tolerance to Type 2 Diabetes. Diabetes Care. 2019;42(2):265-272. PubMed, PubMedCentral, CrossRef
  54. Nolan JJ, Færch K. Estimating insulin sensitivity and beta cell function: perspectives from the modern pandemics of obesity and type 2 diabetes. Diabetologia. 2012;55(11):2863-2867. PubMed, CrossRef
  55. Tronko ND, Zak KP. Obesity and diabetes mellitus. Lik Sprava. 2013;8(1125):3-21. (In Russian). PubMed
  56. IDF Diabetes Atlas 10th edition International Diabetes Federation. 2021.
  57. Di Angelantonio E, Bhupathiraju ShN, Wormser D, Gao P, Kaptoge S, Berrington de Gonzalez A, Cairns B, Huxley R, Jackson C, Joshy G, Lewington S, Manson J, Murphy N, Patel A, Samet J, Woodward M, Zheng W, Zhou M, Bansal N, Barricarte A, Carter B, James Cerhan, Smith G, Fang X, Franco O, Green J, Halsey J, Hildebrand J, Jung K, Korda R, McLerran D, Moore S, O’Keeffe L, Paige E, Ramond A, Reeves G, Rolland B, Sacerdote C, Sattar N, Sofianopoulou E, Stevens J, Thun M, Ueshima H, Yang L, Yun Y, Willeit P, Banks E, Valerie Beral, Chen Z, Gapstur S, Gunter M, Hartge P, Jee S, Lam TH, Peto R, Potter J, Willett W, Thompson S, Danesh J, Hu F. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016;388(10046):776-786. PubMed, PubMedCentral, CrossRef
  58. Saienko YaA, Zak KP, Popova VV, Semionova TA. Leukocyte composition and immunophenotype of the blood lymphocytes in women with type 2 diabetes mellitus and obesity. Int J Endocrinol. 2016;(5(77)):13-19. (In Russian). CrossRef
  59. Arbel Y, Finkelstein A, Halkin A, Birati EY, Revivo M, Zuzut M, Shevach A, Berliner S, Herz I, Keren G, Banai S. Neutrophil/lymphocyte ratio is related to the severity of coronary artery disease and clinical outcome in patients undergoing angiography. Atherosclerosis. 2012;225(2):456-460. PubMed, CrossRef
  60. Wang Y, Xiao Y, Zhong L, Ye D, Zhang J, Tu Y, Bornstein SR, Zhou Z, Lam KSL, Xu A. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with β-cell autoimmunity in patients with type 1 diabetes. Diabetes. 2014;63(12):4239-4248. PubMed, CrossRef
  61. Leslie RD, Palmer J, Schloot NC, Lernmark A. Diabetes at the crossroads: relevance of disease classification to pathophysiology and treatment. Diabetologia. 2016;59(1):13-20. PubMed, CrossRef
  62. Silvestri M, Bontempelli M, Giacomelli M, Malerba M, Rossi GA, Di Stefano A, Rossi A, Ricciardolo FLM. High serum levels of tumour necrosis factor-alpha and interleukin-8 in severe asthma: markers of systemic inflammation? Clin Exp Allergy. 2006;36(11):1373-1381. PubMed, CrossRef
  63. Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T. Biomarkers associated with COVID-19 disease progression. Crit Rev Clin Lab Sci. 2020;57(6):389-399. PubMed, PubMedCentral, CrossRef
  64. Bouter KP, Meyling FH, Hoekstra JB, Masurel N, Erkelens DW, Diepersloot RJ. Influence of blood glucose levels on peripheral lymphocytes in patients with diabetes mellitus. Diabetes Res. 1992;19(2):77-80. PubMed
  65. Dalmas E, Venteclef N, Caer C, Poitou C, Cremer I, Aron-Wisnewsky J, Lacroix-Desmazes S, Bayry J, Kaveri SV, Clément K, André S, Guerre-Millo M. T cell-derived IL-22 amplifies IL-1β-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes. 2014;63(6):1966-1977. PubMed, CrossRef
  66. O’Rourke RW, Kay T, Lyle EA, Traxler SA, Deveney CW, Jobe BA, Roberts CT Jr, Marks D, Rosenbaum JT. Alterations in peripheral blood lymphocyte cytokine expression in obesity. Clin Exp Immunol. 2006;146(1):39-46. PubMed, PubMedCentral, CrossRef
  67. Womack J, Tien PC, Feldman J, Shin JH, Fennie K, Anastos K, Cohen MH, Bacon MC, Minkoff H. Obesity and immune cell counts in women. Metabolism. 2007;56(7):998-1004. PubMed, PubMedCentral, CrossRef
  68. Che TT, Ren Y, Liu SF. Expression of circulating CD4+ CD25+ FOXP3+ regulation T cells in obese patients. Diabetologia. 2013;56(Suppl 1) :A563.
  69. Roitt IM, Brostoff J, Male D. Immunology.(5th edition). Mosby, London-Tokyo, 1998. 581 p.
  70. Afanasieva VV, Zak KP, Butenko AK. Electron microscopy and ultracytochemistry of blood lymphocytes containing Gall bodies in healthy individuals.
    Tsitol Genet. 2003;37(1):56-60. (In Russian). PubMed
  71. Velardi A, Grossi CE, Cooper MD. A large subpopulation of lymphocytes with T helper phenotype (Leu-3/T4+) exhibits the property of binding to NK cell targets and granular lymphocyte morphology. J Immunol. 1985n;134(1):58-64. CrossRef
  72. Khomenko BM, Gruzov MA, Shlyakhovenko VS, Zak KP. The content and ultrastructure of blood CD4 + lymphocytes in healthy people and patients with type 1 diabetes. Fiziol Zhurn. 1989;35(5):31–38.
  73. Vozianov AF, Butenko AK, Zak KP. Cytokines. Biological and antitumor properties. Kiev: Naukova Dumka; 1998. 315 p.
  74. Wang Y, van Boxel-Dezaire AH, Cheon H, Yang J, Stark GR. STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proc Natl Acad Sci USA. 2013;110(42):16975-16980. PubMed, PubMedCentral, CrossRef
  75. Dror E, Dalmas E, Meier DT, Wueest S, Thévenet J, Thienel C, Timper K, Nordmann TM, Traub S, Schulze F, Item F, Vallois D, Pattou F, Kerr-Conte J, Lavallard V, Berney T, Thorens B, Konrad D, Böni-Schnetzler M, Donath MY. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol. 2017;18(3):283-292. PubMed, CrossRef
  76. Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov. 2014;13(6):465-476. PubMed, CrossRef
  77. Chae JS, Paik JK, Kang R, Kim M, Choi Y, Lee SH, Lee JH. Mild weight loss reduces inflammatory cytokines, leukocyte count, and oxidative stress in overweight and moderately obese participants treated for 3 years with dietary modification. Nutr Res. 2013;33(3):195-203. PubMed, CrossRef
  78. Herder C, Brunner E, Tabak A. Elevated levels of the anti-inflammatory interleukin-1 receptor antagonist (IL-1Ra) precede, but do not prevent, the onset of type 2 diabetes (The Whitehall II Study). Diabetologia. 2008;51(Suppl 1):313.
  79. Carstensen M, Herder C, Kivimaki M, et al. Acceleration of the interleukin-1 receptor antagonist (IL-1Ra) trajectory precedes the diagnosis of type 2 diabetes by 6 years: the Whitehall II prospective cohort study. Diabetologia. 2009;52(Suppl 1):22.
  80. Urwyler SA, Schuetz P, Ebrahimi F, Donath MY, Christ-Crain M. Interleukin-1 Antagonism Decreases Cortisol Levels in Obese Individuals. J Clin Endocrinol Metab. 2017 May 1;102(5):1712-1718. PubMed, CrossRef
  81. Thorand B, Kolb H, Baumert J, Koenig W, Chambless L, Meisinger C, Illig T, Martin S, Herder C. Elevated levels of interleukin-18 predict the development of type 2 diabetes: results from the MONICA/KORA Augsburg Study, 1984-2002. Diabetes. 2005;54(10):2932-2938. PubMed, CrossRef
  82. Daniele G, Guardado Mendoza R, Winnier D, Fiorentino TV, Pengou Z, Cornell J, Andreozzi F, Jenkinson C, Cersosimo E, Federici M, Tripathy D, Folli F. The inflammatory status score including IL-6, TNF-α, osteopontin, fractalkine, MCP-1 and adiponectin underlies whole-body insulin resistance and hyperglycemia in type 2 diabetes mellitus. Acta Diabetol. 2014;51(1):123-131. PubMed, CrossRef
  83. Rodrigues KF, Pietrani NT, Bosco AA, Campos FMF, Sandrim VC, Gomes KB. IL-6, TNF-α, and IL-10 levels/polymorphisms and their association with type 2 diabetes mellitus and obesity in Brazilian individuals. Arch Endocrinol Metab. 2017;61(5):438-446. PubMed, CrossRef
  84. Goyal R, Faizy AF, Siddiqui SS, Singhai M. Evaluation of TNF-α and IL-6 Levels in Obese and Non-obese Diabetics: Pre- and Postinsulin Effects. N Am J Med Sci. 2012;4(4):180-184. PubMed, PubMedCentral, CrossRef
  85. Roohi A, Tabrizi M, Abbasi F, Ataie-Jafari A, Nikbin B, Larijani B, Qorbani M, Meysamie A, Asgarian-Omran H, Nikmanesh B, Bajouri A, Shafiey N, Maleki A. Serum IL-17, IL-23, and TGF-β levels in type 1 and type 2 diabetic patients and age-matched healthy controls. Biomed Res Int. 2014;2014:718946. PubMed, PubMedCentral, CrossRef
  86. Chen C, Shao Y, Wu X, Huang C, Lu W. Elevated interleukin-17 levels in patients with newly diagnosed type 2 diabetes mellitus. Biochem Physiol. 2016;5(2):206. CrossRef
  87. Mishima Y, Kuyama A, Tada A, Takahashi K, Ishioka T, Kibata M. Relationship between serum tumor necrosis factor-alpha and insulin resistance in obese men with Type 2 diabetes mellitus. Diabetes Res Clin Pract. 2001;52(2):119-123. PubMed, CrossRef
  88. Mirza S, Hossain M, Mathews C, Martinez P, Pino P, Gay JL, Rentfro A, McCormick JB, Fisher-Hoch SP. Type 2-diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin and low levels of leptin in a population of Mexican Americans: a cross-sectional study. Cytokine. 2012;57(1):136-142. PubMed, PubMedCentral, CrossRef
  89. Hotamisligil GS. The role of TNFalpha and TNF receptors in obesity and insulin resistance. J Intern Med. 1999;245(6):621-625. PubMed, CrossRef
  90. Seyhan A, Nunes-Lopez Yu, Garufi G. Differences in serum cytokine concentration in lean and obese individuals with prediabetes and type 2 diabetes. Diabetes. 2015;64(Suppl 1) : A472, 1825-P.
  91. Williams A, Radford J, O’Brien J, Davison K. Type 2 diabetes and the medicine of exercise: The role of general practice in ensuring exercise is part of every patient’s plan. Aust J Gen Pract. 2020;49(4):189-193. PubMed, CrossRef
  92. De Graaf DM, Teufel LU, Joosten LAB, Dinarello CA. Interleukin-38 in Health and Disease. Cytokine. 2022;152:155824. PubMed, CrossRef
  93. Ho KT, Shiau MY, Chang YH, Chen CM, Yang SC, Huang CN. Association of interleukin-4 promoter polymorphisms in Taiwanese patients with type 2 diabetes mellitus. Metabolism. 2010;59(12):1717-1722. PubMed, CrossRef
  94. Silva-Filho JL, Caruso-Neves C, Pinheiro AAS. IL-4: an important cytokine in determining the fate of T cells. Biophys Rev. 2014;6(1):111-118. PubMed, PubMedCentral, CrossRef
  95. Badr E, Assar M, Elshayeb EI, Fath El-Bab S, El-Kousy S. A preliminary study of the relation between IL-4 and hypertension in type II diabetes mellitus. Mol Biol Rep. 2018;45(6):1967-1972. PubMed, CrossRef
  96. Sartangello C, Marrchetti P, Marselli L. Suppressors of cytokine signsling (SOCS) in cytokine-induced human islet cell damage. Abstracts of the 37th Annual Meeting of the EASD Glasgow, United Kingdom, 9–13 September 2001. Diabetologia. 2001;44(Suppl 1):A1–A325. CrossRef
  97. te Velde AA, Huijbens RJ, Heije K, de Vries JE, Figdor CG. Interleukin-4 (IL-4) inhibits secretion of IL-1 beta, tumor necrosis factor alpha, and IL-6 by human monocytes. Blood. 1990;76(7):1392-1397. PubMed, CrossRef
  98. Cheung DL, Hart PH, Vitti GF, Whitty GA, Hamilton JA. Contrasting effects of interferon-gamma and interleukin-4 on the interleukin-6 activity of stimulated human monocytes. Immunology. 1990;71(1):70-75. PubMed, PubMedCentral
  99. Binisor ID, Moldovan R, Moldovan I, Andrei AM, Banita MI. Abdominal Obesity and Type 2 Diabetes Mellitus are Associated With Higher Seric Levels of IL 4 in Adults. Curr Health Sci J. 2016;42(3):231-237. PubMed, PubMedCentral, CrossRef
  100. Shiau MY, Chuang PH, Yang CP, Hsiao CW, Chang SW, Chang KY, Liu TM, Chen HW, Chuang CC, Yuan SY, Chang YH. Mechanism of Interleukin-4 Reducing Lipid Deposit by Regulating Hormone-Sensitive Lipase. Sci Rep. 2019;9(1):11974. PubMed, PubMedCentral, CrossRef
  101. Alsaid A, El-Missiry M, Hatata el-S, Tarabay M, Settin A. Association of IL-4-590 C>T and IL-13-1112 C>T gene polymorphisms with the susceptibility to type 2 diabetes mellitus. Dis Markers. 2013;35(4):243-247. PubMed, PubMedCentral, CrossRef
  102. Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol. 2012;32(1):23-63. PubMed, PubMedCentral, CrossRef
  103. van Exel E, Gussekloo J, de Craen AJ, Frölich M, Bootsma-Van Der Wiel A, Westendorp RG, Leiden 85 Plus Study. Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes : the Leiden 85-Plus Study. Diabetes. 2002;51(4):1088-1092. PubMed, CrossRef
  104. Esposito K, Nappo F, Giugliano F, Di Palo C, Ciotola M, Barbieri M, Paolisso G, Giugliano D. Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitus. Am J Clin Nutr. 2003;78(6):1135-1140. PubMed, CrossRef
  105. Canecki-Varžić S, Prpić-Križevac I, Mihaljević S, Bilić-Ćurčić I, Alkhamis T, Wagner J, Škrlec I, Barbić J. Association Between Interleukin-10 Gene (-1082g/A) Polymorphism and Type 2 Diabetes, Diabetes-Related Traits, and Microvascular Complications in the Croatian Population. Acta Clin Croat. 2018;57(1):71-81. PubMed, PubMedCentral, CrossRef
  106. Alexandraki K, Piperi C, Kalofoutis C, Singh J, Alaveras A, Kalofoutis A. Inflammatory process in type 2 diabetes: The role of cytokines. Ann N Y Acad Sci. 2006;1084:89-117. PubMed, CrossRef
  107. Herder C, Baumert J, Thorand B, Martin S, Löwel H, Kolb H, Koenig W. Chemokines and incident coronary heart disease: results from the MONICA/KORA Augsburg case-cohort study, 1984-2002. Arterioscler Thromb Vasc Biol. 2006;26(9):2147-2152. PubMed, CrossRef
  108. Zhang Z, Yuan W, Sun L, Szeto FL, Wong KE, Li X, Kong J, Li YC. 1,25-Dihydroxyvitamin D3 targeting of NF-kappaB suppresses high glucose-induced MCP-1 expression in mesangial cells. Kidney Int. 2007;72(2):193-201. PubMed, CrossRef
  109. Müller S, Martin S, Koenig W, Hanifi-Moghaddam P, Rathmann W, Haastert B, Giani G, Illig T, Thorand B, Kolb H. Impaired glucose tolerance is associated with increased serum concentrations of interleukin 6 and co-regulated acute-phase proteins but not TNF-alpha or its receptors. Diabetologia. 2002;45(6):805-812. PubMed, CrossRef
  110. Zozuliñska D, Majchrzak A, Sobieska M, Wiktorowicz K, Wierusz-Wysocka B. Serum interleukin-8 level is increased in diabetic patients. Diabetologia. 1999;42(1):117-118. PubMed, CrossRef
  111. Shah R, Hinkle CC, Ferguson JF, Mehta NN, Li M, Qu L, Qu L, Lu Y, Putt ME, Ahima RS, Reilly MP. Fractalkine is a novel human adipochemokine associated with type 2 diabetes. Diabetes. 2011;60(5):1512-1518. PubMed, PubMedCentral, CrossRef
  112. Smieszek SP, Polymeropoulos VM, Polymeropoulos CM, Przychodzen BP, Birznieks G, Polymeropoulos MH. Elevated plasma levels of CXCL16 in severe COVID-19 patients. Cytokine. 2022;152:155810. PubMed, PubMedCentral, CrossRef
  113. Neurath MF. COVID-19 and immunomodulation in IBD. Gut. 2020;69(7):1335-1342. PubMed, PubMedCentral, CrossRef
  114. Komisarenko SV. Scientists’ pursuit for SARS-COV-2 coronavirus: strategies against pandemic. Ukr Biochem J. 2020;92(6):5-52. CrossRef
  115. Tsymbalyuk VI, Tronko MD, Popova VV. Modern views on the pathogenetic aspects and treatment strategies of patients with diabetes mellitus and COVID‑19. Endocrynologia. 2020;25(Spec Is 2):3-44. CrossRef
  116. Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol. 2021;93(1):250-256. PubMed, PubMedCentral, CrossRef
  117. Bergantini L, d’Alessandro M, Cameli P, Otranto A, Luzzi S, Bianchi F, Bargagli E. Cytokine profiles in the detection of severe lung involvement in hospitalized patients with COVID-19: The IL-8/IL-32 axis. Cytokine. 2022;151:155804. PubMed, PubMedCentral, CrossRef
  118. Ashrafzadeh-Kian S, Campbell MR, Jara Aguirre JC, Walsh J, Kumanovics A, Jenkinson G, Rinaldo P, Snyder MR, Algeciras-Schimnich A. Role of immune mediators in predicting hospitalization of SARS-CoV-2 positive patients. Cytokine. 2022;150:155790. PubMed, PubMedCentral, CrossRef
  119. Shoenfeld Y. Corona (COVID-19) time musings: Our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmun Rev. 2020;19(6):102538. PubMed, PubMedCentral, CrossRef
  120. Liu R, Wang Y, Li J, Han H, Xia Z, Liu F, Wu K, Yang L, Liu X, Zhu C. Decreased T cell populations contribute to the increased severity of COVID-19. Clin Chim Acta. 2020;508:110-114. PubMed, PubMedCentral, CrossRef
  121. Feldman EL, Savelieff MG, Hayek SS, Pennathur S, Kretzler M, Pop-Busui R. COVID-19 and Diabetes: A Collision and Collusion of Two Diseases. Diabetes. 2020;69(12):2549-2565. PubMed, PubMedCentral, CrossRef
  122. Metwally AA, Mehta P, Johnson BS, Nagarjuna A, Snyder MP. COVID-19-Induced New-Onset Diabetes: Trends and Technologies. Diabetes. 2021;70(12):2733-2744. PubMed, PubMedCentral, CrossRef
  123. Paul WE. Ed. Fundamental Immunology. 4th ed. Philadelphia: Lippincott-Raven, 1998. 1589 p.
  124. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102-108. PubMed, PubMedCentral, CrossRef
  125. Qun S, Tang Y, Sun J, Liu Z, Wu J, Zhang J, Guo J, Xu Z, Zhang D, Chen Z, Hu F, Xu X, Ge W. Neutrophil-To-Lymphocyte Ratio Predicts 3-Month Outcome of Acute Ischemic Stroke. Neurotox Res. 2017;31(3):444-452. PubMed, CrossRef
  126. Armstrong EJ, Morrow DA, Sabatine MS. Inflammatory biomarkers in acute coronary syndromes: part I: introduction and cytokines. Circulation. 2006;113(6):e72-e75. PubMed, CrossRef
  127. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;588(7836):E6. PubMed, PubMedCentral, CrossRef
  128. Declercq J, De Leeuw E, Lambrecht BN. Inflammasomes and IL-1 family cytokines in SARS-CoV-2 infection: from prognostic marker to therapeutic agent. Cytokine. 2022;157:155934. PubMed, PubMedCentral, CrossRef
  129. Bramante CT, Huling JD, Tignanelli CJ, Buse JB, Liebovitz DM, Nicklas JM, Cohen K, Puskaric MA, Belani HK, Proper JL, Siegel LK, Klatt NR, Odde DJ, Luke DG, Anderson B, Karger AB, Ingraham NE, Hartman KM, Rao V, Hagen AA, Patel B, Fenno SL, Avula N, Reddy NV, Erickson SM, Lindberg S, Fricton R, Lee S, Zaman A, Saveraid HG, Tordsen WJ, Pullen MF, Biros M, Sherwood NE, Thompson JL, Boulware DR, Murray TA.
    Randomized Trial of Metformin, Ivermectin, and Fluvoxamine for Covid-19. N Engl J Med. 2022;387(7):599-610. PubMed, PubMedCentral, CrossRef
  130. Todorović-Raković N, Whitfield JR. Between immunomodulation and immunotolerance: The role of IFNγ in SARS-CoV-2 disease. Cytokine. 2021;146:155637. PubMed, PubMedCentral, CrossRef
  131. Khunti K, Del Prato S, Mathieu C, Kahn SE, Gabbay RA, Buse JB. COVID-19, Hyperglycemia, and New-Onset Diabetes. Diabetes Care. 2021;44(12):2645-2655. PubMed, PubMedCentral, CrossRef
  132. Li J, Huang DQ, Zou B, Yang H, Hui WZ, Rui F, Yee NTS, Liu C, Nerurkar SN, Kai JCY, Teng MLP, Li X, Zeng H, Borghi JA, Henry L, Cheung R, Nguyen MH. Epidemiology of COVID-19: A systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J Med Virol. 2021;93(3):1449-1458. PubMed, PubMedCentral, CrossRef
  133. Atkinson MA, Powers AC. Distinguishing the real from the hyperglycaemia: does COVID-19 induce diabetes? Lancet Diabetes Endocrinol. 2021;9(6):328-329. PubMed, PubMedCentral, CrossRef
  134. Müller JA, Groß R, Conzelmann C, Krüger J, Merle U, Steinhart J, Weil T, Koepke L, Bozzo CP, Read C, Fois G, Eiseler T, Gehrmann J, van Vuuren J, Wessbecher IM, Frick M, Costa IG, Breunig M, Grüner B, Peters L, Schuster M, Liebau S, Seufferlein T, Stenger S, Stenzinger A, MacDonald PE, Kirchhoff F Sparrer KMJ, Walther P, Lickert H, Barth TFE, Wagner M, Münch J, Heller S, Kleger A. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab. 2021;3(2):149-165. PubMed, CrossRef
  135. Tang X, Uhl S, Zhang T, Xue D, Li B, Vandana JJ, Acklin JA, Bonnycastle LL, Narisu N, Erdos MR, Bram Y, Chandar V, Chong ACN, Lacko LA, Mi Z, Lim JK, Borczuk AC, Xiang J, Naji A, Collins FS, Evans T, Liu C, tenOever BR, Schwartz RE, Chen S. SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metab. 2021;33(8):1577-1591.e7. PubMed, PubMedCentral, CrossRef
  136. Rathmann W, Kuss O, Kostev K. Incidence of newly diagnosed diabetes after Covid-19. Diabetologia. 2022;65(6):949-954. PubMed, PubMedCentral, CrossRef
  137. Crouse AB, Grimes T, Li P, Might M, Ovalle F, Shalev A. Metformin Use Is Associated With Reduced Mortality in a Diverse Population With COVID-19 and Diabetes. Front Endocrinol (Lausanne). 2021;11:600439. PubMed, PubMedCentral, CrossRef
  138. Varghese E, Samuel SM, Liskova A, Kubatka P, Büsselberg D. Diabetes and coronavirus (SARS-CoV-2): Molecular mechanism of Metformin intervention and the scientific basis of drug repurposing. PLoS Pathog. 2021;17(6):e1009634. PubMed, PubMedCentral, CrossRef
  139. Zak KP, Furmanova OV, Popova VV, Sayenko YaA. The content of pro-inflammatory cytokines IL-1β, IL-6, IL-17A and TNFα in the blood of patients with type 2 diabetes after therapy with metformin. Ukr Biochem J. 2020;92(6):105-112. CrossRef
  140. Horby P, Mafham M, Linsell L, Bell JL, Staplin N, Emberson JR, Wiselka M, Ustianowski A, Elmahi E, Prudon B, Whitehouse T, Felton T, Williams J, Faccenda J, Underwood J, Baillie JK, Chappell LC, Faust SN, Jaki T, Jeffery K, Lim WS, Montgomery A, Rowan K, Tarning J, Watson JA, White NJ, Juszczak E, Haynes R, Landray MJ. Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med. 2020;383(21):2030-2040. PubMed, PubMedCentral, CrossRef
  141. Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C, Ustianowski A, Elmahi E, Prudon B, Green C, Felton T, Chadwick D, Rege K, Fegan C, Chappell LC, Faust SN, Jaki T, Jeffery K, Montgomery A, Rowan K, Juszczak E, Baillie JK, Haynes R, Landray MJ. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021;384(8):693-704. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.