Category Archives: Uncategorized

New anti-candida active nitrogen-containing bisphosphonates as inhibitors of farnesyl pyrophosphate synthase Candida albicans

L. O. Metelytsia, D. M. Hodyna, O. L. Kobzar,
V. V. Kovalishyn, I. V. Semenyuta

V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry,
National Academy of Sciences of Ukraine, Kyiv;
e-mail: ivan@bpci.kiev.ua

Received: 05 February 2019; Accepted: 14 March 2019

In our previous work, a number of new nitrogen-containing bisphosphonates (N-BPs) with high predicted and experimental antifungal activity were presented as potential Candida albicans farnesyl pyrophos­phate synthase (FPPS) inhibitors. To confirm this hypothesis, a homologous C. albicans FPPS model with high-quality scores has been developed and used in present work to study the molecular mechanism of nit­rogen-containing bisphosphonates action as anti-Candida agents. The known FPPS inhibitors ammonium 2-(Pyridin-2-ylamino)ethylidene-1,1-bisphosphonate, risedronate and alendronate were used in molecular docking analysis. The molecular docking analysis of the new N-BPs demonstrated a number of common features of all ligand’s interaction in the active center of FPPS C. albicans. It is established that the ligands phosphonate groups are the key elements in the formation of the stable ligand-protein complexes with binding energy in a range (ΔG) from –6.6 to –7.1 kcal/mol due to a significant number of electrostatic, hydrogen and metal-acceptor bonds. It is confirmed that the new studied N-BPs 1 and 3 with high anti-Candida activity are FPPS inhibitors.

Insulin resistance in obese adolescents and adult men modifies the expression of proliferation related genes

O. H. Minchenko1, Y. M. Viletska1, D. O. Minchenko1,2, V. V. Davydov3

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: ominchenko@yahoo.com;
2Bohomolets National Medical University, Kyiv, Ukraine
3SI “Institute of Children and Adolescent Health Care,
National Academy of Medical Sciences of Ukraine”, Kharkiv

Received: 11 December 2018; Accepted: 14 March 2019

Numerous data demonstrate that key regulatory factors, enzymes and receptors including HSPA5, MEST, SLC1A3, PDGFC, and ADM represent poly-functional, endoplasmic reticulum stress-dependent proteins, which control variable metabolic pathways. The expression level of genes of these proteins in the blood and subcutaneous adipose tissue of obese adolescents and adult men with and without insulin resistance was studied. It was shown that in blood of obese adolescents without insulin resistance the expression level of SLC1A3, HSPA5, MEST, and PDGFC genes was significantly increased, but development of insulin resis­tance led to down-regulation of these genes expression except HSPA5 gene as compared to the control group as well as to the group of obese adolescents without insulin resistance. At the same time, the expression level of ADM gene did not change significantly in obese adolescents without insulin resistance, but the development of insulin resistance led to down-regulation of this gene expression. In subcutaneous adipose tissue of obese adult men without insulin resistance the level of SLC1A3 gene expression was decreased, although ADM, MEST, and HSPA5 genes – increased. It was also shown that the development of insulin resistance in obese men affected the expression level of ADM and SLC1A3 genes only. Results of this investigation provide evidence that insulin resistance in obese adolescents and adult men is associated with specific changes in the expression of genes, which related to proliferation and development of obesity and insulin resistance as well as to endoplasmic reticulum stress and contribute to the development of obesity complications.

Kinetic properties of Na(+),K(+)-АТРase of spermatozoa from fertile and infertile men under effect of calix[4]arene C-107

R. V. Fafula, O. I. Meskalo, A. S. Besedina,
Io. A. Nakonechnyi, D. Z. Vorobets, Z. D. Vorobets

Danylo Halytsky Lviv National Medical University, Ukraine;
e-mail: kaf_medicalbiology@meduniv.lviv.ua; roman_fafula@ukr.net

Received: 12 November 2018; Accepted: 14 March 2019

The calix[4]arene C-107 (5,17-diamino(2-pyridyl)methylphosphono-11,23-di-tret-butyl-26,28-dihydro­xy-25,27-dipropoxy-calix[4]arene) effects on the kinetic properties of Na+,K+-ATPase in spermatozoa of fertile (normozoospermia) and infertility men (oligozoospermia, and asthenozoospermia) were studied. It was shown that in spermatozoa of healthy men calix[4]arene С-107 inhibited Na+,K+-ATPase activity and decreased the maximum reaction rate of ATP hydrolase reaction without affecting the coefficient of (half-) activation by ATP and Hill coefficient nH. In оligo- and asthenozoospermic samples of spermatozoa almost a 2-fold decrease of cooperativity coefficient nH of ATPase inhibition with calyx[4]aren C-107 was observed. In normozoospermic samples of spermatozoa the KMgCl2  for Na+,K+-ATPase was decreased at calix[4]arene C-107 high concentrations (≥50 nM) in the incubation medium in contrast to oligozoospermic samples of spermatozoa where KMgCl2 was increased only at high calix[4]arene C-107 concentration (100 nM). The increase of the KMgCl2 in the entire range of investigated calix[4]arene concentrations and the decrease of cooperativity coefficient nH of MgCl2 activating effect were detected in asthenozoospermic samples of Na+­,K+-ATPase.

Сalix[4]arene chalcone amides effects on myometrium mitochondria

S. G. Shlykov1, A. M. Kushnarova-Vakal1, A. V. Sylenko1,
L. G. Babich1, О. Yu. Chunikhin1, O. A. Yesypenko2,
V. I. Kalchenko2, S. O. Kosterin1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: sshlykov@biochem.kiev.ua;
2Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv

Received: 19 November 2018; Accepted: 14 March 2019

Mitochondria are a key player in a wide range of the most important functions of the cell. Calixarenes are supramolecular compounds that have been widely used in bioorganic chemistry and biochemistry. The aim of this work was to study the effects of calix[4]arenes with two (С-1012, С-1021), three (С-1023, С-1024) and four (С-1011) chalcone amide groups on the myometrial mitochondria membranes polarization, Ca2+ concentration in the matrix of these organelles ([Ca2+]m ) and on the average hydrodynamic diameter of mitochondria. It was shown that permeabilized myometrium cells incubation with calix[4]arenes containing two or more chalcone amide groups, was accompanied by an increased level of myometrial mitochondria membranes polarization. All studied calix[4]arenes increased [Ca2+]m values in the absence and in the presence of exogenous Ca2+. The values of [Ca2+]m in the absence of exogenous Ca2+ were higher at mitochondria incubation in Mg2+-containing, than in Mg2+,ATP-containing medium. Incubation of isolated mitochondria with the studied calix[4]arenes resulted in changes of mitochondria volume: at incubation with С-1012, С-1021, C-1023 the average hydrodynamic diameter was decreased, while with С-1011 it was increased. Thus, we have shown that a short-term (5 min) incubation of mitochondria in the presence of 10 µM calix[4]arenes, which contain from two to four chalcone amide groups, increased the level of mitochondria membranes polarization, ionized Ca concentration in the matrix and had different effects on the mitochondrial volume.

Adaptive respiratory response of rat pancreatic acinar cells to mitochondrial membrane depolarization

B. O. Manko, O. O. Bilonoha, V. V. Manko

Ivan Franko National University of Lviv, Ukraine;
e-mail: bohdan.manko@lnu.edu.ua

Received: 06 December 2018; Accepted: 14 March 2019

The dependence of uncoupled respiratory capacity of intact pancreatic acini on oxidative substrate supply and functional cell state has not yet been studied in detail. In this study, the respiratory responses of isolated pancreatic acini to FCCP were measured with Clark electrode and mitochondrial membrane potential was assessed with rhodamine123 fluorescence. The response of acini to FCCP was characteri­zed with maximal uncoupled respiration rate, optimal FCCP concentration, respiration acceleration and decele­ration. Maximal uncoupled respiration rate substantially increased upon the oxidation of glucose + glutamine (3.03 ± 0.54 r.u.), glucose + glutamine + pyruvate (2.82 ± 0.51 r.u.), glucose + isocitrate (2.71 ± 0.33 r.u.), glucose + malate (2.75 ± 0.38 r.u.), glucose + monomethyl-succinate (2.64 ± 0.42 r.u.) or glucose + dimethyl-α-ketoglutarate (2.36 ± 0.33 r.u.) comparing to glucose alone (1.73–2.02 r.u.) or no substrate (1.76 ± 0.33 r.u.). The optimal FCCP concentration was the highest (1.75 μM) upon glucose + glutamine + pyruvate combination and the lowest (0.5 μM) upon glutamate, combinations of glucose with isocitrate, malate, succinate or α-ketoglutarate. Respiration acceleration after FCCP application was the highest with dimethyl-α-ketoglutarate. Following the peak respiration, time-dependent deceleration was observed. It increased with FCCP concentration and depended on oxidative substrate type. Deceleration was the highest upon malate or isocitrate oxidation but was not observed in case of glutamine or dimethyl-α-ketoglutarate oxidation. Pyruvate alone or in combination with glutamine and glucose significantly decreased the depolarizing effect of FCCP on mitochondrial membrane potential and increased respiration elasticity coefficient with respect to the membrane potential change. Thus, in pancreatic acinar cells, the combination of pyruvate, glutamine and glucose enables the optimal adaptive respiratory response to membrane depolarization.

Kinetics of casein hydrolysis by peptidase from Bacillus thuringiensis var. israelensis

O. V. Sevastyanov1, Yu. A. Shesterenko1, A. A. Ryzhak1,
I. I. Romanovska1, N. A. Dziubliuk2, L. D. Varbanets2

1A. V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odesa;
2Danylo Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv;
e-mail: romairina@gmail.com

Received: 25 October 2018; Accepted: 14 March 2019

The kinetics of enzyme reaction is generally studied using the Michaelis-Menten equation and various methods of its linearization. Each method has its advantages and drawbacks, so their comparison for determining the kinetics of new enzymes action is topical. The aim of this work was to study the kinetics of casein hydrolysis catalyzed by new peptidase from Bacillus thuringiensis var. israelensis IMB B-7465 using several methods of enzyme activity assessment and Michaelis-Menten equation linearization. The satisfactory agreement between kinetic constants values obtained by the methods of Lineweaver-Burk, Hanes, Eadie-Hofstee, Cornish-Bowden-Eisenthal was established. The Lineweaver-Burk method was shown to be optimal for determining Km and Vmax of casein hydrolysis. Estimation of caseinolytic activity with the use of ortho-phthalic dialdehyde allowed more accurate Vmax determination compared to the use of Anson and Kunitz methods.

Glutathione influence on energy metabolism in rat liver mitochondria under experimental nephropathy

Ye. O. Ferenchuk, I. V. Gerush

Higher State Educational Establishment of Ukraine “Bukovinian State Medical University”, Chernivtsi;
e-mail: yelena_f@ukr.net

Received: 17 October 2018; Accepted: 14 March 2019

Mitochondrial oxidative damage and disorders of energy metabolism contribute to a wide range of pathologies and disease progression. In our work, the effect of glutathione on the activity of respiratory chain enzymes and the content of free SH-groups in rat liver mitochondria was examined with the use of folic acid-induced nephropathy model. Mitochondria were isolated by differential centrifugation, NADH-dehydrogenase, succinate dehydrogenase, cytochrome oxidase and H+-ATPase activity were determined. The activity of these enzymes and the content of the free SH-groups in the liver were shown to be decreased under conditions of nephropathy, evidently due to the intensification of the free radical processes. The introduction of glutathione increased the content of SH-groups and the activity of the Complexes II and V enzymes of mitochondrial respiratory chain but did not change the activity of cytochrome oxidase in mitochondria isolated from the liver of rats under experimental nephropathy. The results obtained demonstrate a positive effect of glutathione on mitochondrial succinate dehydrogenase and H+-ATPase activity normalization in the liver of rats with nephropathy. These findings may help to extend the understanding of mitochondrial energy metabolism under development of kidney diseases.

Phenolic compounds in plants: biogenesis and functions

L. M. Babenko1, O. E. Smirnov2, K. O. Romanenko1,
O. K. Trunova3, I. V. Kosakіvskа1

1M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv;
2Educational and Scientific Center “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Ukraine;
3V.I. Vernadsky Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: lilia.babenko@gmail.com

Received: 05 November 2018; Accepted: 14 March 2019

Phenolic compounds (PCs) in plants play an important role in growth control and have antioxidant, structural, attractant, signaling and protective functions. Information on the discovery, study and identification of phenolic compounds in plants, their role in the complex system of secondary metabolites has been analyzed and summarized. The functions of PCs at the macromolecular, cellular as well as organism and population levels are described. The pathways of PCs formation, enzymes responsible for their synthesis and the plasticity of the synthesis in a plant cell are highlighted. The involvement of PCs in the plant breathing, photosynthesis, oxidation-reduction processes and regulation of the plants physiological state are discussed.

Young scientists conference Modern Aspects of Biochemistry and Biotechnology – 2019

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine
21-22 March, 2019, Kyiv, Ukraine

On March 21-22, 2019 the regular annual young scientists Conference “Modern Aspects of Biochemistry and Biotechnology” was successfully held in Palladin Institute of Biochemistry. The Conference was organi­zed by the Young Scientists Council of Palladin Institute of Biochemistry with the support of ALT Ukraine Ltd –advanced laboratory technologies Company. Young scientists from Kyiv, Dnipro, Kharkiv, Chernivtsi, Ternopil, Poltava took part in the Conference as oral speakers. The scientific program of the Conference included the following sections: Translational Studies; Biochemistry; Biotechnology; Molecular Biology; Medical Biochemistry; Biochemical mechanisms of resistance to adverse environmental conditions. The workshops devoted to  computer analysis of biological images; methods of biological experimental data statistical analysis; quantitative polymerase chain reaction for gene expression estimation; spectrofluorometry as a rainbow force for biochemists service were organized to broaden the research skills of young scientists.
Conference was opened by the new section ‘Translational Studies’. So many reports were focused on the efforts to build on basic scientific research to create new therapies, medical procedures, or diagnostics. The members of Scientific Committee specially acknowledged those young scientists who presented data about long way from idea, it’s in vitro approval to the in vivo testing and application.
The honorary awards for the best oral presentation were given to Anna Myronova (“CRISPRa-mediated direct cardiac reprogramming of embryonic rat fibroblasts”), Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv; Yevgen Stohnii (“Epitope determination of novel fibrinogen-specific antibody by limi­ted proteolysis”), Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv; Anton Tkachenko (“Fascin is upregulated in nasal mucosa in chronic rhinosinusitis with nasal polyps”), Kharkiv National Medical University, Kharkiv.
The honourable mention prizes for interesting scientific reports were presented to Vira Borshchovetska (Yuriy Fedkovych Chernivtsi National University, Chernivtsi), Olga Revka and Valerija Zhovannyk (Palladin Institute of Biochemistry, Kyiv),  Maxym Skrypnyk (Ukrainian medical stomatological academy, Poltava).
The meeting was held in a creative and friendly atmosphere with constructive and helpful discussions. The abstracts of the oral presentations of participants will be published in the “Ukrainian Biochemical Journal”.

The head of the Conference Competition Commission, D. Sc., prof. Olga Matyshevska

The head of the Young Scientists Council of Palladin Institute of Biochemistry, PhD Tetjana Jatsenko

Blood coagulation parameters in rats with acute radiation syndrome receiving activated carbon as a preventive remedy

V. Chernyshenko1, E. Snezhkova2, M. Mazur2, T. Chernyshenko1,
T. Platonova1, O. Sydorenko2, E. Lugovskoy1, V. Nikolaev2

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: bio.cherv@gmail.com;
2RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv

Received: 13 December 2018; Accepted: 20 March 2019

Radiation-induced coagulopathy (RIC) is one of the major causes of death during acute radiation syndrome (ARS). The aim of this study was to characterize the responses of the hemostasis system to ARS of a moderate level on the 1st and 9th days after irradiation. We aimed to identify molecular markers of the blood coagulation system that are most affected by ARS and to estimate the enterosorption effect on the development of irradiation-induced changes. Platelet aggregation rate, activated partial thromboplastin time (APTT) and fibrinogen concentration were determined by standard methods. Level of protein C (PC) was measured using­ chromogenic substrate S2366 (p-Glu-Pro-Arg-pNa) and Agkistrodon halys halys snake venom activa­ting enzyme. Functionally inactive forms of prothrombin (FIFPs) were determined using two activators in parallel – thromboplastin or prothrombin activator from Echis multisqumatis venom. Rats of both irradia­ted groups had a higher risk of intravascular clotting in comparison to both control groups. Statistically significant shortening of clotting time in the APTT test (24 ± 4 s vs. 33 ± 5 s) and increased fibrinogen concentration (4.2 ± 0.6 mg/ml vs. 3.2 ± 0.3 mg/ml) were detected. Both parameters were normalized on the 9th day after irradiation. However the platelet count was decreased (0.3∙106 ± 0.05∙106 1/μl vs. 0.145∙106 ± 0.04∙106 1/μl) due to the impaired megakaryocytic function. The level of PC was decreased after X-ray irradiation (70 ± 10%) and partly restored on the 9th day after irradiation (87 ± 10%). Administration of activated carbon (AC) inhibited the drop in the PC concentration after X-ray irradiation (86 ± 15%) and accelerated its restoration on the 9th day (103 ± 14%). The statistically significant accumulation of FIFPs was detected in blood plasma of irradia­ted rats at the 1st and 9th days after irradiation. No FIFPs were found in any irradiated rat treated with AC. Characterization of the hemostasis system of rats that were exposed to a semilethal dose of X-rays allowed us to select parameters that can be used for monitoring of ARS development. Apart of from basic coagulation tests (APTT) and the measurement of platelet aggregation, fibrinogen and protein C level we can recommend the determination of FIFPs as a useful tool for estimation of the hemostasis response after irradiation with X-rays. This test indicates the intravascular thrombin generation and can help predict thrombotic complication or disseminated intravascular coagulation. Determination of FIFPs in blood plasma of irradia­ted rats allowed us to study the enterosorption effect on the development of irradiation-induced changes. It was shown that enterosorption with AC prevented accumulation of FIFPs which appears to be a newly discovered anti-thrombotic effect of therapy with AC. ARS influenced hemostasis by inducing thrombin generation (indicated by FIFPs generation), low-grade inflammation (indicated by PC concentration decrease) and thrombocytopenia. Enterosorption with AC minimizes inflammation and pro-coagulant processes caused by a moderate dose of X-ray irradiation. Accumulation of FIFPs can be assumed to be one of the most sensitive markers of the blood coagulation response to X-ray irradiation.