Category Archives: Uncategorized

Interaction of 4 allotropic modifications of carbon nanoparticles with living tissues

S. Ya. Paryzhak1, T. I. Dumych1, S. M. Peshkova1,2,
E. E. Bila2, A. D. Lutsyk1, A. Barras3,
R. Boukherroub3, S. Szunerits3, R. O. Bilyy1

1Danylo Halytsky Lviv National Medical University, Ukraine;
2Ivan Franko Lviv National University, Ukraine;
3Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, France;
e-mail: r.bilyy@gmail.com

Received: 19 January 2019; Accepted: 20 March 2019

Environmental pollution and technological progress lead to carbon nanoparticles that pose a serious health risk. They are present in soot, dust, and printing toner and can also be formed during grinding and cutting. Human neutrophils are able to sequester foreign material by formation of neutrophil extracellular traps (NETs), a process that can cause a strong inflammatory response. In the current work we compared proinflammatory properties of different carbon-based nanostructures: nanodiamonds, graphene oxide, fullere­nes C60 and carbon dots. We tested adjuvant properties of carbon nanoparticles in a murine immunization model by investigating humoral (specific IgG and IgM antibodies) and cellular (delayed type hypersensitivity) immune responses. The ability of NETs to sequester nanoparticles was analyzed in a mouse air pouch model and neutrophil activation was verified by in vivo tracking of near-infrared labeled nanodiamonds and ex vivo fluorescent assays using human blood-derived neutrophils. All carbon nanoparticles exhibited proinflammatory adjuvant-like properties by stimulating production of specific IgG but not IgM antibodies (humoral immune response). The adjuvant-like response decreased in this order: from nanodiamonds, graphene oxide, fullerenes C60 to carbon dots. None of the studied carbon nanoparticles triggered a delayed type hypersensitivity reaction (cellular immune response). Nanodiamonds and fullerenes C60 were sequestrated in the body by NETs, as confirmed in the air pouch model and by in vivo fluorescent tracking of near-infrared labeled nanodiamonds.

Apoptosis induction in human leukemia cells by novel 2-amino-5-benzylthiazole derivatives

N. S. Finiuk1,2, I. I. Ivasechko1, O. Yu. Klyuchivska1,
Yu. V. Ostapiuk3, V. P. Hreniukh2, Ya. R. Shalai2,
V. S. Matiychuk3, M. D. Obushak3,
A. M. Babsky2, R. S. Stoika1

1Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv;
2Ivan Franko National University of Lviv, Biology Faculty, Lviv, Ukraine;
3Ivan Franko National University of Lviv, Chemistry Faculty, Lviv, Ukraine;
e-mail: stoika@cellbiol.lviv.ua

Received: 21 December 2018; Accepted: 20 March 2019

Derivatives of 2-amino-5-benzylthiazole are heterocyclic pharmacophores that exhibit different pharmacological activities including anticancer action. The mechanisms of such action of these compounds are not clear. The aim of the present study was to investigate apoptosis induction, particularly DNA damage in human leukemia cells, by the novel synthesized thiazole derivatives ‒ 2,8-dimethyl-7-(3-trifluoromethyl-benzyl)pyrazolo[4,3-e]thiazolo[3,2-a]pyrimidin-4(2H)-one (compound 1) and 7-benzyl-8-methyl-2-propylpyrazolo[4,3-e]thiazolo[3,2-a]pyrimidin-4(2H)-one (compound 2). Western-blot analysis, DNA comet assay in alkaline conditions, diphenylamine DNA fragmentation assay, agarose gel retardation, and methyl green DNA intercalation assays were used to study the effects of the studied compounds in human leukemia cells. These compounds induced PARP1 and caspase 3 cleavage in the leukemia cells, also increased the level of pro-apoptotic Bim protein and the mitochondrion-specific EndoG nuclease, and decreased the level of the anti-apoptotic Bcl-2 protein. They caused DNA single-strand breaks and DNA fragmentation in the leukemia cells without direct DNA binding or DNA intercalation. Thus, novel 2-amino-5-benzylthiazole derivatives may be promising agents for apoptosis induction in the targeted human leukemia cells.

Preparation of highly-concentrated autologous platelet-rich plasma for biomedical use

V. Chernyshenko1, K. Shteinberg2, N. Lugovska1, M. Ryzhykova1,
T. Platonova1, D. Korolova1, E. Lugovskoy1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: bio.cherv@gmail.com;
2‘Dr. Zapolska Clinic’, Kyiv, Ukraine

Received: 21 December 2018; Accepted: 20 March 2019

Cell therapy with platelets is a widely accepted approach for wound healing and tissue regeneration in medicine. However, with most available methods poorly concentrated platelet suspensions (up to 0.3∙106 1/µl) or suspensions of mostly inactivated or lost platelets are obtained. In this study, we aimed to develop a simple and effective method for preparing a suspension of native and resting platelets with over 1∙106 1/µl. Platelet-rich plasma (PRP) was obtained from fresh blood of healthy donors (n = 5) collected using different amounts of heparin as the anticoagulant. Samples of PRP were spun down and re-suspended in auto­logous blood plasma. Count and vitality of platelets in each sample were determined by aggregation study on the Solar AP2110 aggregometer. Platelet shape and cytoplasmic granularity that indicate the nativity of platelets were monitored on the COULTER EPICS XL Flow Cytometer. This study of aggregation of platelets in PRP obtained using various amounts of heparin allowed us to reduce final concentrations to the amount that effectively prevented clotting and did not affect platelet reactivi­ty (5 U/ml). PRP concentrated 5 times with a total concentration of cells of 1∙106 1/µl was able to be activated by adenosine diphosphate (ADP) (aggregation rate 54 ± 7%). The amount of cells with altered shape and granularity in concentrated suspension was not higher than 20%. This finding means that the platelets would still be able to release a number of growth factors and other biologically active compounds after stimulation or injection into tissue during cell therapy. The decrease in heparin concentrations also minimizes haemorrhage in the injection site supporting biomedical use of the suspension. A simple and effective method for preparation of highly-concentrated PRP (1.2∙106 1/µl) for biomedical use was developed. Aggregometry and flow cytometry proved that obtained platelets were resting and able to be activated. Being autologous, the preparation can be widely used for cell therapy without additional precautions.

Targeting of the pro-oxidant-antioxidant balance in vitro and in vivo by 4-thiazolidinone-based chemotherapeutics with anticancer potential

L. Kobylinska1, O. Klyuchivska2, R. Lesyk1, R. Stoika2

1Danylo Halytsky Lviv National Medical University, Ukraine;
2Institute of Cell Biology, Lviv, Ukraine;
e-mail: lesya8@gmail.com

Received: 05 January 2019; Accepted: 20 March 2019

Oxidative stress is one of the main mechanisms by which anticancer chemotherapeutics damage normal tissues and organs. At the same time, it is an important biochemical mechanism of the neoplastic action of such medicines. The aim of the present study was to determine the pro-oxidant-antioxidant balance in vitro and in vivo under the influence of novel 4-thiazolidinone-based chemotherapeutics with anticancer potential. An advantage of using these compounds in vivo is their low general toxicity, compared to doxorubicin (Kobylinska L. et al., 2014, 2015, 2016). The 4-thiazolidinone derivatives (Les-3288, Les-3833, Les-3882) with previously established anti-neoplastic activity in vitro (Kobylinska L. et al., 2016) and antitumor effect in vivo (Kobylinska L. et al., 2018) were synthesized, dissolved in dimethyl sulfoxide, and administered intraperitoneally to Wistar rats daily for 20 days. Doses of the injected drugs equaled 10% of the LD50, namely doxorubicin – 5.5 mg/kg, Les-3882 and Les-3833 – 10.7 mg/kg, and Les-3288 – 24.3 mg/kg. The radical scavenging of 1,1-diphenyl-2-picrylhydrazil (DPPH) activity was measured. Concentrations of thio-barbituric acid-active products were assessed in blood serum, liver, heart and kidney tissues of treated rats. Additionally, the activities of superoxide dismutase, catalase and glutathione peroxidase were measured in blood serum and these tissues. We found that administration for 20 days of Les-3288, Les-3833 and Les-3882 compounds disturbed the pro-oxidant-antioxidant balance in the treated rats. Increased amounts of products of reactions of lipid peroxidation and exhaustion of the enzymatic antioxidant system in liver, heart and kidney tissues were detected. In general, Les-3288, Les-3833 and Les-3882 compounds exhibited less pro-oxidant action, compared with the effect of doxorubicin. According to the results of influencing the pro-oxidant-antioxidant balance in the selected tissues, the studied compounds can be ranked in the following order: doxorubicin >> Les-3833 > Les-3288 >> Les-3882. The results of measuring direct scavenging ability of these compounds observed in 24 h suggests their lower toxic effect compared with the effect of the doxorubicin. The obtained results are in correspondence with the results of our recent experiments demonstrating their antineoplastic effect in vitro (Kobylinska L. et al., 2016) and anticancer action in vivo (Kobylinska L. et al., 2018), as well as their lower general toxicity in vivo compared with doxorubicin (Kobylinska L. et al., 2014, 2015, 2016).

The Sisyphus Effect

Sandor G. Vari

International Research and Innovation in Medicine Program,
Cedars – Sinai Medical Center, Los Angeles, CA 90048-5502, USA;
e-mail: Sandor.Vari@cshs.org

Scientific work for researchers, women and men equally, is an endless challenge. Determining new markers for early diagnosis of diseases, investigating the maintenance of cell and tissue homeostasis, studying metabolic regulation and dysregulation as well as intra-organ and interorgan crosstalk can be tiresome work and can sometimes seem like the punishment Zeus gave to Sisyphus. Sisyphus, the Greek mythological figure, was condemned to roll a boulder up a mountain but near the top of the mountain the boulder roll down; for eternity Sisyphus was forced to repeat this task over and over. Although scientific research can sometimes seem like this, the cleverness of scientists helps to overcome the “Sisyphus Effect”. “I leave Sisyphus at the foot of the mountain. One always finds one’s burden again. But Sisyphus teaches the higher fidelity that negates the gods and raises rocks” [1]. Sisyphus is a symbol of self-overcoming.  Sisyphus was also infamous for his deception though, which had led Zeus to punish him to roll the boulder up a hill that rolled down repeatedly, and Sisyphus had to keep trying again and again for eternity [2].
While the vast majority of scientists are honest and work hard to achieve their research goals, some scientists are egotistical and may resort to trickery and doing things unethically. In Science the role of Sisyphus is played by the community of researchers, and to ensure that the boulder does not roll down the hill again. We researchers have to share our research results as well as repeat the published methods and research protocols again and again and these tasks can seem like “Sisyphean” work. Furthermore, in Science, the research community also plays the role of Zeus and will punish dishonesty so therefore we researchers must roll a boulder up a hill again and again and after we have proved that the published scientific work is sound, the “boulder” and the scien­tist will stay on top of the hill.
In the Association for Regional Cooperation in the Fields of Health, Science and Technology (RECOOP­ HST Association) scientists equally share the burden of Zeus and Sisyphus independently of the status of their X and Y chromosomes, and I know from Albert Camus’ essay that Sisyphus is Happy. Each atom of that stone, each mineral flake of that night-filled mountain, in itself, forms a world. The struggle itself toward the heights is enough to fill a man’s heart. One must imagine Sisyphus happy [1].

The contribution of the Nobel Prize laureates to the development of dynamic biochemistry and bioenergetics. E. Buchner, A. Kossel, R. Willstätter, O. Meyerhof, A. Hill, O. Warburg, A. Szent-Györgyi

V. M. Danilova, R. P. Vynogradova, S. V. Komisarenko

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiyv;
e-mail: valdan@biochem.kiev.ua

Received: 29 November 2018; Accepted: 13 December 2018

Thanks to the great discoveries of the Nobel laureates of the first half of the 20th century – E. Buchner, A. Kossel, R. Willstätter, O. Meyerhof, A. Hill, O. Warburg, A. Szent-Györgyi, we have gained a deep understanding of the mechanisms of organic­ substances conversion and oxidation in living­ organisms­. This article gives an analysis of the research activity of these distinguished scientists, who, through decoding the main ways of conver­ting carbohydrates and energy in living organisms, laid the foundations of dynamic biochemistry and bioener­getics (one of the branches of biochemical science).

Levels of angiogenic regulators and MMP-2, -9 activities in Martorell ulcer: a case report

O. M. Petrenko1, A. A. Tykhomyrov2

1Bogomolets National Medical University, Kyiv, Ukraine;
2Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine;
e-mail: artem_tykhomyrov@ukr.net

Received: 27 July 2018; Accepted: 13 December 2018

Martorell hypertensive ischemic leg ulcers (HYTILU) represent a unique form of lower extremity non-healing ulcers that develop in association with poorly controlled high blood pressure. The present study was performed in order to assess levels of protein regulators of angiogenesis (vascular endothelial growth factor, or VEGF, and angiostatins) and to evaluate activities of matrix metalloproteinases (MMPs) (gelatinases MMP-2 and -9) in wound cutaneous tissue in the case of patient with 2-years HYTILU history. VEGF and angiostatin levels were analyzed by Western blot, MMP activities were evaluated by gelatin zymography. We report here for the first time that wound tissue in HYTILU is characterized with increased levels of VEGF (by 75 folds vs. histologically normal tissue, P < 0.01) and dramatic overproduction of angiostatin levels, which are undetectable in healthy cutaneous tissue. Approximately 10-fold elevation in MMP-2 and -9 activities is observed in wound tissue as compared with uninjured cutaneous tissue. Obtained results indicate that increased production of angiogenic inhibitors, angiostatins, may counteract VEGF-induced pro-angiogenic signaling, and together with MMP overactivation, contributes to failed healing of ischemic ulcer. Further extended studies are needed to clarify how changes of angiogenic profile and imbalance of proteolytic activities in non-healing Martorell ulcers can be considered during their management procedures to improve efficacy of surgery debridement and/or skin grafting.

Evaluation of biochemical indicators in blood plasma of rats with tetracycline-induced hepatosis and their correction by milk phospholipids

V. A. Gryshchenko1, V. V. Musiychuk1, V. O. Chernyshenko2,
O. V. Gornytska2, T. M. Platonova2

1National University of Life and Environmental Sciences of Ukraine, Kyiv;
2Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
е-mail: viktoriya_004@ukr.net

Received: 13 July 2018; Accepted: 13 December  2018

Tetracycline is a drug with direct cytotoxic action on the liver, and therefore it is widely used in pharmaceutical studies of therapeutic effectiveness of hepatoprotective preparations. The aim of the present work was to determine the biochemical indicators in blood plasma of rats with tetracycline-induced hepatosis and correction properties of milk phospholipids under tetracycline-induced hepatosis in rats. To achieve this, Wistar rats were administered 250 mg/kg of 4% tetracycline hydrochloride suspension once a day intragastrically. As the corrective therapy, 1% solution of BAS “FLP-MD” was administered in liposomal form based on milk phospholipids. Under modeled steatohepatitis, significant destructive changes were observed in the cell membranes of hepatocytes in experimental rats. It was confirmed by higher activity of transaminase (in particular, activity of АSТ increased 4 times, that of ALT 1.7 times and the AST/ALT ratio was increased 2.4 times in blood plasma). The synthesis of clotting factors in livers of animals with hepatosis was inhibited. The content of fibrinogen in blood plasma decreased by 21%, factor II (prothrombin) by 27.8%, Xa-factor by 27.9%, and protein C by 40.6%. The animals also had hypochromic anemia, azotemia and bilirubinemia. The calcium-phosphor metabolism and hyperkalemia were observed. The liposomal BAS “FLP-MD” based on milk phospholipids diminished harmful effects of tetracycline, in particular supporting blood coagulation factors’ level restoration, and also by the activity of transaminases. According to the results, it may be used in prophylactics and pharmaceutical correction of steatohepatitis.

Cellular fatty acid composition of Aeromonas genus – destructor of aromatic xenobiotics

T. V. Gudzenko, O. G. Gorshkova, N. V. Korotaieva,
O. V. Voliuvach, А. М. Ostapchuk, V. O. Іvanytsia

Оdesa I. I. Mechnikov National University, Ukraine;
e-mail: tgudzenko@ukr.net

Received: 17 September 2018; Accepted: 13 December 2018

The aim of this study was a determination of the fatty acid composition of cellular lipids and identification of the strains, isolated from the wastewater of pharmaceutical production, – the destructor of aromatic xenobiotics. The phenotypic characteristics and cellular fatty acid (FA) composition confirmed the strain belonging to the Aeromonas ichthiosmia with the similarity index of library data MIDI Sherlock – 0.564. Analysis of the cellular FA composition of the strain Aeromonas ichthiosmia ONU552 was carried out using the MIDI Sherlock microorganism identification system based on the gas chromatograph Agilent 7890. Chromatographic analysis showed that the fatty acid profile of the strain Aeromonas ichthiosmia ONU552 contains 26 fatty acids with the total number of carbon atoms from 10 to 18. 85.27% of saturated and unsaturated fatty acids had unbranched structure. The total content of unsaturated fatty acids – 16:1 w7c/16:1 w6c, 18:1 w7c, 16:1 w7c alcohol, 17:1 w8c, 17:1 w6c, 16:1 w5c, was 50% of the total fatty acid pool. Less than 1.5% branched fatty acids were predominantly in the iso form: 13:0 iso (0.20%); 15:0 iso (0.97%); 17:1 iso w9c (1.35%), 17:0 iso (1.49%); in the anteiso form, only one acid 17:0 (0.27%) was identified. It was shown that the characteris­tic of the fatty acid composition of the strain Aeromonas ichthiosmia ONU552 – the destructor of aromatic xenobio­tics, was the presence of hydroxyacids 12:0 3OH, 15:0 3OH, 15:0 iso 3OH and dominance of hexadecanoic (16:0) and hexadecenoic (16:1 w7c/16:1 w6c) of fatty acids.

Role of AP-1 transcriptional factor in development of oxidative and nitrosative stress in periodontal tissues during systemic inflammatory response

A. M. Yelins’ka, O. Ye. Akimov, V. O. Kostenko

Ukrainian Medical Stomatological Academy, Poltava, Ukraine;
e-mail: riseofrevan5@gmail.com

Received: 04 August 2018; Accepted: 13 December 2018

Chronic systemic inflammatory response syndrome (SIRS) underlies many diseases (sepsis, atherosclerosis, diabetes mellitus). According to research data of recent years the key role in the development of SIRS is played by the activation of various nuclear transcription factors. The work was aimed at studying the role of such transcription factor as activator protein 1 (AP-1) in the development of oxidative and nitrosative stress in soft periodontal tissues during chronic systemic inflammatory response (SIRS). The experiment was carried out on 24 the Wistar rats. We induced SIRS by bacterial lipopolysaccharide of Salmonella typhi (0.4 μg/kg) intraperitoneal injection. We studied changes in the functioning of the nitric oxide (NO) cycle, the production of superoxide anion radical (O2•-) and the activity of antioxidant enzymes in soft periodontal tissues homogenate. We used SR11302 as an Ap-1 inhibitor (15 mg/kg) for 2 months. We established that during the SIRS modeling, the activity of antioxidant enzymes in soft periodontal tissues decreased with a simultaneous increase in the production of O2•-. SIRS elevated the production of NO by inducible NO-synthase (iNOS) and nitrite reductases. The nonoxidative cleavage of L-arginine under this condition was also increased. The concentration of peroxynitrite (ONOO) was shown to be elevated more than 2-fold. The inhibition of AP-1 by SR11302 normalized the functional state of the NO cycle, reduced O2•- production and restored the activity of antioxidant enzymes. In this way, under SIRS conditions, “vicious circle” of ONOO formation is formed. SIRS in soft periodontal tissues poses a threat of oxidative and nitrosative stress development. Usage of AP-1 activation inhibitor SR11302 breaks “vicious circle” of ONOO formation.