Tag Archives: blood

Insulin resistance in obese adolescents and adult men modifies the expression of proliferation related genes

O. H. Minchenko1, Y. M. Viletska1, D. O. Minchenko1,2, V. V. Davydov3

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: ominchenko@yahoo.com;
2Bohomolets National Medical University, Kyiv, Ukraine
3SI “Institute of Children and Adolescent Health Care,
National Academy of Medical Sciences of Ukraine”, Kharkiv

Received: 11 December 2018; Accepted: 14 March 2019

Numerous data demonstrate that key regulatory factors, enzymes and receptors including HSPA5, MEST, SLC1A3, PDGFC, and ADM represent poly-functional, endoplasmic reticulum stress-dependent proteins, which control variable metabolic pathways. The expression level of genes of these proteins in the blood and subcutaneous adipose tissue of obese adolescents and adult men with and without insulin resistance was studied. It was shown that in blood of obese adolescents without insulin resistance the expression level of SLC1A3, HSPA5, MEST, and PDGFC genes was significantly increased, but development of insulin resis­tance led to down-regulation of these genes expression except HSPA5 gene as compared to the control group as well as to the group of obese adolescents without insulin resistance. At the same time, the expression level of ADM gene did not change significantly in obese adolescents without insulin resistance, but the development of insulin resistance led to down-regulation of this gene expression. In subcutaneous adipose tissue of obese adult men without insulin resistance the level of SLC1A3 gene expression was decreased, although ADM, MEST, and HSPA5 genes – increased. It was also shown that the development of insulin resistance in obese men affected the expression level of ADM and SLC1A3 genes only. Results of this investigation provide evidence that insulin resistance in obese adolescents and adult men is associated with specific changes in the expression of genes, which related to proliferation and development of obesity and insulin resistance as well as to endoplasmic reticulum stress and contribute to the development of obesity complications.

Effects of thiosulfonates on the lipid composition of rat tissues

A. Z. Pylypets1,2, R. Ya. Iskra2, V. V. Havryliak1,2, A. V. Nakonechna1, V. P. Novikov1, V. I. Lubenets1

1Lviv Polytechnic National University, Ukraine;
2Institute of Animal Biology, NAAS of Ukraine, Lviv;
e-mail: vlubenets@gmail.com

Thiosulfonates are synthetic analogs of organic sulfur-containing compounds isolated from plants. Recent studies have shown that these substances lowering cholesterol content in the body, are effective against hyperlipidemia. Therefore, the aim of our investigation was to study the effect of synthesized thiosulfonates on the content of lipids and their spectrum in rats blood, liver and kidney. The amount of total lipids and their fractional profile were determined by thin-layer chromatography. The administration of methyl-, ethyl-, and allylthiosulfonates at a dose of 300 mg/kg of body weight did not cause significant changes in the content of total lipids and phospholipids, but led to the redistribution of their classes in the examined tissues. The content of triacylglycerols in the blood plasma under the action of ethyl- and allylthiosulfonates was decreased by 29.14 and 23.19% (P < 0.05-0.01), respectively, whereas the injection with methyl- and ethylthiosulfonates was accompanied by a significant decrease in mono-, di-, triglycerides and free fatty acids in the liver compared to control. The most significant changes in the lipid profile of kidney tissue were detected under the action of methylthiosulfonate.

Changes in glutathione system and lipid peroxidation in rat blood during the first hour after chlorpyrifos exposure

V. P. Rosalovsky, S. V. Grabovska, Yu. T. Salyha

Institute of Animal Biology, National Academy of Agrarian Sciences of Ukraine, Lviv;
e-mail: ros.volodymyr@gmail.com

Chlorpyrifos (CPF) is a highly toxic organophosphate compound, widely used as an active substance of many insecticides. Along with the anticholinesterase action, CPF may affect other biochemical mechanisms, particularly through disrupting pro- and antioxidant balance and inducing free-radical oxidative stress. Origins and occurrence of these phenomena are still not fully understood. The aim of our work was to investigate the effects of chlorpyrifos on key parameters of glutathione system and on lipid peroxidation in rat blood in the time dynamics during one hour after exposure. We found that a single exposure to 50 mg/kg chlorpyrifos caused a linear decrease in butyryl cholinesterase activity, increased activity of glutathione peroxidase and glutathione reductase, alterations in the levels of glutathione, TBA-active products and lipid hydroperoxides during 1 hour after poisoning. The most significant changes in studied parameters were detected at the 15-30th minutes after chlorpyrifos exposure.

Biochemical changes in rats under the influence of cesium chloride

N. M. Melnikova, O. V. Yermishev

National University of Life and Environmental Sciences of Ukraine, Kyiv;
e-mail: iermishev@i.ua

Cesium is lately accumulated actively in the environment, but its influence on human and ani­mal organism is the least studied among heavy metals. It is shown that the action of cesium chloride in rats caused significant changes in blood chemistry, which are characterized by a decrease of total protein content, pH, an increase in the level of urea, creatinine, glucose and total hemoglobin. The results showed that potassium content in all the studied organs and tissues of poisoned rats decreases under the action of cesium chloride. Histological examination of the heart tissue in rats poisoned with cesium chloride indicates the onset of pathology of cardiovascular system. It was found out that use of the drug “Asparkam” reduces the negative effect of cesium chloride on the body of rats.