Tag Archives: carbohydrate

Dietary sucrose defines lifespan and metabolism in Drosophila

O. Strilbytska, T. Strutynska, U. Semaniuk,
N. Burdyliyk, O. Lushchak*

Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine;
*e-mail: oleh.lushchak@pnu.edu.ua

Received: 28 February 2020; Accepted: 25 June 2020

Nutrition affects various life-history traits. We used fruit flies Drosophila melanogaster to determine whether life-history traits, particularly life span and metabolism, are affected by dietary sucrose content. We fed flies by four different diets containing constant yeast concentration and increasing amounts of sugar ranged from 1% to 20%. We found that low sucrose diet increases female lifespan. We also showed, that low dietary sucrose maximized malate dehydrogenase, aspartate aminotransferase activity in males and lactate dehydrogenase activity in females. In addition, dietary carbohydrate has a considerable impact on urea level, suggesting that dietary carbohydrate impacts overall metabolism. Our findings reveal the influence of dietary sugar on metabolic enzymes activities, indicating an existence of optimal nutritional conditions for prolongevity phenotype and confirming an important impact of dietary sugar on life-history traits.

Effect of glyphosate on the energy exchange in carp organs

A. A. Zhidenko, E. V. Bіbchuk, E. V. Barbukho

Taras Shevchenko Chernihiv State Pedagogical University, Ukraine;
e-mail: zaa2006@ukr.net

The use of glyphosate as a herbicide in agriculture can lead to the presence of its residues and metabolites (aminomethylphosphonic acid) in food for human consumption and pose a threat to health. The effect of these herbicides on the fish organism at the biochemical level has been insufficiently studied. We studied changes in the content of adenine nucleotides, enzyme activity, quantitative indexes of energy metabolism substrates in carp under the action of glyphosate. It has been found that proteins are the major ener­gy substrate under the influence of glyphosate in the liver, brain, white muscle of carp yearlings. Glyphosphate  decreases energy metabolism in the brain of carp and increases it in the white muscles. The growth of activity of catabolic enzymes in the liver under the influence of glyphosate can be attributed to the adaptive remodelling of metabolic pathways for homeostasis and enantiostasis in response to herbicides