Ukr.Biochem.J. 2020; Volume 92, Issue 5, Sep-Oct, pp. 97-105

doi: https://doi.org/10.15407/ubj92.05.097

Dietary sucrose defines lifespan and metabolism in Drosophila

O. Strilbytska, T. Strutynska, U. Semaniuk,
N. Burdyliyk, O. Lushchak*

Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine;
*e-mail: oleh.lushchak@pnu.edu.ua

Received: 28 February 2020; Accepted: 25 June 2020

Nutrition affects various life-history traits. We used fruit flies Drosophila melanogaster to determine whether life-history traits, particularly life span and metabolism, are affected by dietary sucrose content. We fed flies by four different diets containing constant yeast concentration and increasing amounts of sugar ranged from 1% to 20%. We found that low sucrose diet increases female lifespan. We also showed, that low dietary sucrose maximized malate dehydrogenase, aspartate aminotransferase activity in males and lactate dehydrogenase activity in females. In addition, dietary carbohydrate has a considerable impact on urea level, suggesting that dietary carbohydrate impacts overall metabolism. Our findings reveal the influence of dietary sugar on metabolic enzymes activities, indicating an existence of optimal nutritional conditions for prolongevity phenotype and confirming an important impact of dietary sugar on life-history traits.

Keywords: , , , , ,


References:

  1. Lushchak OV, Rovenko BM, Gospodaryov DV, Lushchak VI. Drosophila melanogaster larvae fed by glucose and fructose demonstrate difference in oxidative stress markers and antioxidant enzymes of adult flies. Comp Biochem Physiol A Mol Integr Physiol. 2011;160(1):27-34. PubMed, CrossRef
  2.  Lushchak OV, Gospodaryov DV, Rovenko BM, Glovyak AD, Yurkevych IS, Klyuba VP, Shcherbij MV, Lushchak VI. Balance between macronutrients affects life span and functional senescence in fruit fly Drosophila melanogaster. J Gerontol A Biol Sci Med Sci. 2012;67(2):118-125. PubMed, CrossRef
  3. Grandison RC, Piper MD, Partridge L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature. 2009;462(7276):1061-1064. PubMed, PubMedCentral, CrossRef
  4. Mair W, Piper MD, Partridge L. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol. 2005;3(7):e223.
    PubMed, PubMedCentral, CrossRef
  5. Lushchak OV, Gospodaryov DV, Rovenko BM, Yurkevych IS, Perkhulyn NV, Lushchak VI. Specific dietary carbohydrates differentially influence the life span and fecundity of Drosophila melanogaster. J Gerontol A Biol Sci Med Sci. 2014;69(1):3-12. PubMed, CrossRef
  6. Matzkin LM, Johnson S, Paight C, Bozinovic G, Markow TA. Dietary protein and sugar differentially affect development and metabolic pools in ecologically diverse Drosophila. J Nutr. 2011;141(6):1127-1133. PubMed, CrossRef
  7. Rovenko BM, Perkhulyn NV, Gospodaryov DV, Sanz A, Lushchak OV, Lushchak VI. High consumption of fructose rather than glucose promotes a diet-induced obese phenotype in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol. 2015;180:75-85. PubMed, CrossRef
  8. Bai Y, Li K, Shao J, Luo Q, Jin LH. Flos Chrysanthemi Indici extract improves a high-sucrose diet-induced metabolic disorder in Drosophila. Exp Ther Med. 2018;16(3):2564-2572. PubMed, PubMedCentral, CrossRef
  9.  Rovenko BM, Kubrak OI, Gospodaryov DV, Perkhulyn NV, Yurkevych IS, Sanz A, Lushchak OV, Lushchak VI. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J Insect Physiol. 2015;79:42-54. PubMed, CrossRef
  10. Cantó C, Auwerx J. Calorie restriction: is AMPK a key sensor and effector? Physiology (Bethesda). 2011;26(4):214-224. PubMed, PubMedCentral, CrossRef
  11. Oldham S, Hafen E. Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends Cell Biol. 2003;13(2):79-85. PubMed, CrossRef
  12. Semaniuk U, Feden’ko K, Yurkevych IS, Storey KB, Simpson SJ, Lushchak O. Within-diet variation in rates of macronutrient consumption and reproduction does not accompany changes in lifespan in Drosophila melanogaster. Entomol Exp Appl. 2018; 166(1): 74-80.  CrossRef
  13. Rovenko BM, Perkhulyn NV, Lushchak OV, Storey JM, Storey KB, Lushchak VI. Molybdate partly mimics insulin-promoted metabolic effects in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol. 2014;165:76-82. PubMed, CrossRef
  14. Lozinsky OV, Lushchak OV, Kryshchuk NI, Shchypanska NY, Riabkina AH, Skarbek SV, Maksymiv IV, Storey JM, Storey KB, Lushchak VI. S-nitrosoglutathione-induced toxicity in Drosophila melanogaster: Delayed pupation and induced mild oxidative/nitrosative stress in eclosed flies. Comp Biochem Physiol A Mol Integr Physiol. 2013;164(1):162-170. PubMed, CrossRef
  15.  Bruce KD, Hoxha S, Carvalho GB, Yamada R, Wang HD, Karayan P, He S, Brummel T, Kapahi P, Ja WW. High carbohydrate-low protein consumption maximizes Drosophila lifespan. Exp Gerontol. 2013;48(10):1129-1135. PubMed, PubMedCentral, CrossRef
  16. Lushchak O, Strilbytska O, Piskovatska V, Storey KB, Koliada A, Vaiserman A. The role of the TOR pathway in mediating the link between nutrition and longevity. Mech Ageing Dev. 2017;164:127-138. PubMed, CrossRef
  17. Mera JR, Dickson B, Feldman M. Influence of gender on the ratio of serum aspartate aminotransferase (AST) to alanine aminotransferase (ALT) in patients with and without hyperbilirubinemia. Dig Dis Sci. 2008;53(3):799-802. PubMed, CrossRef
  18. McGill MR. The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI J. 2016 ;15:817-828. PubMed, PubMedCentral
  19. Watford M. The urea cycle: Teaching intermediary metabolism in a physiological setting. Biochem Mol Biol Educ. 2003; 31(5): 289-297. CrossRef
  20. Hamberg O. Regulation of urea synthesis by diet protein and carbohydrate in normal man and in patients with cirrhosis. Relationship to glucagon and insulin. Dan Med Bull. 1997;44(3):225-241. PubMed
  21. Lee KP. Dietary protein:carbohydrate balance is a critical modulator of lifespan and reproduction in Drosophila melanogaster: a test using a chemically defined diet. J Insect Physiol. 2015;75:12-19. PubMed, CrossRef
  22. Kenyon C. A pathway that links reproductive status to lifespan in Caenorhabditis elegans. Ann N Y Acad Sci. 2010;1204:156-162. PubMed, CrossRef
  23. Tatar M. The plate half-full: status of research on the mechanisms of dietary restriction in Drosophila melanogaster. Exp Gerontol. 2011;46(5):363-368. PubMed, PubMedCentral, CrossRef
  24. Masoro EJ. Overview of caloric restriction and ageing. Mech Ageing Dev. 2005;126(9):913-922. PubMed, CrossRef
  25. Puig O, Marr MT, Ruhf ML, Tjian R. Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev. 2003;17(16):2006-2020. PubMed, PubMedCentral, CrossRef
  26. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15-25. PubMed, CrossRef
  27. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress.  Proc Natl Acad Sci USA. 2004;101(10):3329-3335. PubMed, PubMedCentral, CrossRef
  28. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol. 2004;14(10):885-890. PubMed, PubMedCentral, CrossRef
  29. Min KJ, Tatar M. Restriction of amino acids extends lifespan in Drosophila melanogaster. Mech Ageing Dev. 2006;127(7):643-646. PubMed, PubMedCentral, CrossRef
  30. Granchi C, Bertini S, Macchi M, Minutolo F. Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials. Curr Med Chem. 2010;17(7):672-697. PubMed, CrossRef
  31. Lukacova S, Sørensen BS, Alsner J, Overgaard J, Horsman MR. The impact of hypoxia on the activity of lactate dehydrogenase in two different pre-clinical tumour models. Acta Oncol. 2008;47(5):941-947. PubMed, CrossRef
  32. Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AG, Martin WF. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. 2012;76(2):444-495. PubMed, PubMedCentral, CrossRef
  33. Sookoian S, Pirola CJ. Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome. World J Gastroenterol. 2012;18(29):3775-3781. PubMed, PubMedCentral, CrossRef
  34. Hilliker AJ, Duyf B, Evans D, Phillips JP. Urate-null rosy mutants of Drosophila melanogaster are hypersensitive to oxygen stress. Proc Natl Acad Sci USA. 1992;89(10):4343-4347. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.