Tag Archives: metabolism

Yeast concentration in the diet defines Drosophila metabolism of both parental and offspring generations

O. M. Strilbytska1*, N. P. Stefanyshyn1,
U. V. Semaniuk1, O. V. Lushchak1,2*

1Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine;
2Research and Development University, Ivano-Frankivsk, Ukraine;
*e-mail: olya_b08@ukr.net or oleh.lushchak@pnu.edu.ua

Received: 18 April 2021; Accepted: 12 November 2021

Parental dietary nutrients epigenetically influence offspring metabolism. Our analysis revealed unforeseen patterns in how enzymes of the main metabolic pathways respond to protein content in the diet. We reared parental flies Drosophila melanogaster on four types of diet with different dry yeast concentrations ranging from 0.25% to 15%. The subsequent generation was fed by the same diet, so the only variable in the experiments was the yeast concentration in the parental diet. We showed that protein restriction in the parental diet led to higher lactate dehydrogenase (LDH) activity in parents, and this effect was inherited in their progeny. The transgenerational effect of parental dietary yeast on malate dehydrogenase (MDH) activity was found only in males. An elevated level of dietary yeast was sufficient to enhance alanine transaminase ( ALT) and aspartate transaminase (AST) activity in parents, however, did not affect ALT activity and decreased AST  in their offspring. A low yeast parental diet was shown to cause higher urea content in F1 males. It is concluded that parental dietary yeast plays a critical role in metabolic health that can be inherited through generation.

Dietary protein defines stress resistance, oxidative damages and antioxidant defense system in Drosophila melanogaster

O. Strilbytska1*, A. Zayachkivska1, T. Strutynska1,
U. Semaniuk1, A. Vaiserman2, O. Lushchak1,3*

1Vasyl Stefanyk Precarpathian National University,
Department of Biochemistry and Biotechnology, Ivano-Frankivsk, Ukraine;
2D.F. Chebotarev Institute of Gerontology, NAMS, Kyiv, Ukraine;
3Research and Development Institute, Ivano-Frankivsk, Ukraine;
*e-mail: olya_b08@ukr.net or oleh.lushchak@pnu.edu.ua

Received: 06 April 2021; Accepted: 22 September 2021

Dietary interventions have been previously shown to influence lifespan in diverse model organisms. Manipulations with macronutrients content including protein and amino acids have a significant impact on various fitness and behavioral traits in the fruit fly Drosophila melanogaster. Therefore, we asked if yeast amount of the diet could influence stress resistance and antioxidant defense system in Drosophila. We examined the effects of four diets differing in the relative level of yeast, as a source of protein, on resistance to cold, heat, starvation and oxidative stress induced by menadione as well as activities of antioxidant enzymes and levels of oxidative stress markers. Protein restriction as well protein-enriched diet led to a reduction of survival under starvation and oxidative stress conditions. However, enhanced resistance to heat shock was affected by high yeast concentration in the diet. Also, protein-rich diets resulted in higher activity of antioxidant enzymes. Increased levels of protein thiols, low-molecule mass thiols, lipid peroxides in response to high yeast concentration in the diet were detected in females only. Thus, we can assume that consumption of a high protein diet could induce oxidative stress in fruit fly.

The role of hypoxia-inducible factors in the development of chronic pathology

N. S. Shevchenko, N. V. Krutenko*, T. V. Zimnytska, K. V. Voloshyn

V. N. Karazin Kharkiv National University, Department of Pediatrics No. 2,Ukraine;
*e-mail: n.v.krutenko@karazin.ua

Received: 13 October 2020; Accepted: 07 July 2021

This review highlights the current understanding of hypoxia-inducible factors (HIFs) role as regulators of oxygen-dependent reactions and inducers of genes expression in  human organism. The focus is on the most significant relationships between the activation or inhibition of the HIFs intracellular system and development of the inflammatory process in various organs, chronic diseases of gastrointestinal tract, osteoarticular system, kidneys as well as  hematological, endocrine and metabolic disorders.

Dietary sucrose defines lifespan and metabolism in Drosophila

O. Strilbytska, T. Strutynska, U. Semaniuk,
N. Burdyliyk, O. Lushchak*

Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine;
*e-mail: oleh.lushchak@pnu.edu.ua

Received: 28 February 2020; Accepted: 25 June 2020

Nutrition affects various life-history traits. We used fruit flies Drosophila melanogaster to determine whether life-history traits, particularly life span and metabolism, are affected by dietary sucrose content. We fed flies by four different diets containing constant yeast concentration and increasing amounts of sugar ranged from 1% to 20%. We found that low sucrose diet increases female lifespan. We also showed, that low dietary sucrose maximized malate dehydrogenase, aspartate aminotransferase activity in males and lactate dehydrogenase activity in females. In addition, dietary carbohydrate has a considerable impact on urea level, suggesting that dietary carbohydrate impacts overall metabolism. Our findings reveal the influence of dietary sugar on metabolic enzymes activities, indicating an existence of optimal nutritional conditions for prolongevity phenotype and confirming an important impact of dietary sugar on life-history traits.

Sphingosine-1-phosphate: distribution, metabolism and role in the regulation of cellular functions

V. I. Morozov1, G. A. Sakuta2, M. I. Kalinski3

1Sechenov Institute of Evolutionary Physiology and Biochemistry
of the Russian Academy of Sciences, St. Petersburg, Russia;
e-mail: vmorozov.g@gmail.com;
2Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia;
3Kent State University, Kent, OH, USA

The role of sphingosine-1-phosphate (S1P) in regulation of cellular functions and cell protection is reviewed. S1P, along with other sphingolipid metabolites, is believed to act as an intracellular second messenger and as an extracellular mediator molecule. S1P chemistry, production and metabolism are described. Cellular receptors for S1P and their tissue specificity are described. Platelets and erythrocytes have a crucial significance in blood transport of S1P. Hypoxic conditions induce an increase in S1P, which initiates a set of cytoprotective events via its cellular receptors. S1P involvement in regulation of cell migration, myogenesis, control of skeletal muscle function is described. It is shown that S1P balance disturbances may mediate pathological state. S1P system implication in regulation of the most important cellular functions allows considering it as a prospective remedial target.