Ukr.Biochem.J. 2021; Volume 93, Issue 6, Nov-Dec, pp. 119-129


Yeast concentration in the diet defines Drosophila metabolism of both parental and offspring generations

O. M. Strilbytska1*, N. P. Stefanyshyn1,
U. V. Semaniuk1, O. V. Lushchak1,2*

1Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine;
2Research and Development University, Ivano-Frankivsk, Ukraine;
*e-mail: or

Received: 18 April 2021; Accepted: 12 November 2021

Parental dietary nutrients epigenetically influence offspring metabolism. Our analysis revealed unforeseen patterns in how enzymes of the main metabolic pathways respond to protein content in the diet. We reared parental flies Drosophila melanogaster on four types of diet with different dry yeast concentrations ranging from 0.25% to 15%. The subsequent generation was fed by the same diet, so the only variable in the experiments was the yeast concentration in the parental diet. We showed that protein restriction in the parental diet led to higher lactate dehydrogenase (LDH) activity in parents, and this effect was inherited in their progeny. The transgenerational effect of parental dietary yeast on malate dehydrogenase (MDH) activity was found only in males. An elevated level of dietary yeast was sufficient to enhance alanine transaminase ( ALT) and aspartate transaminase (AST) activity in parents, however, did not affect ALT activity and decreased AST  in their offspring. A low yeast parental diet was shown to cause higher urea content in F1 males. It is concluded that parental dietary yeast plays a critical role in metabolic health that can be inherited through generation.

Keywords: , , , , , , ,


  1. Grangeteau C, Yahou F, Everaerts C, Dupont S , Farine JP, Beney L, Ferveur JF. Yeast quality in juvenile diet affects Drosophila melanogaster adult life traits. Sci Rep. 2018;8(1):13070. PubMed, PubMedCentral, CrossRef
  2. Lee KP. Dietary protein:carbohydrate balance is a critical modulator of lifespan and reproduction in Drosophila melanogaster: a test using a chemically defined diet. J Insect Physiol. 2015;75:12-19. PubMedCrossRef
  3. Strilbytska O, Strutynska T, Semaniuk U, Burdyliyk N, Lushchak O. Dietary sucrose defines lifespan and metabolism in Drosophila. Ukr Biochem J. 2020;92(5):97-105. CrossRef
  4. Lushchak OV, Gospodaryov DV, Rovenko BM, Glovyak AD, Yurkevych IS, Klyuba VP, Shcherbij MV, Lushchak VI. Balance between macronutrients affects life span and functional senescence in fruit fly Drosophila melanogaster. J Gerontol A Biol Sci Med Sci. 2012;67(2):118-125. PubMed, CrossRef
  5. Aldrich JC, Maggert KA. Transgenerational inheritance of diet-induced genome rearrangements in Drosophila. PLoS Genet. 2015;11(4):e1005148. PubMed, PubMedCentral, CrossRef
  6. Strilbytska O, Velianyk V, Burdyliuk N, Yurkevych IS, Vaiserman A, Storey KB, Pospisilik A, Lushchak O. Parental dietary protein-to-carbohydrate ratio affects offspring lifespan and metabolism in drosophila. Comp Biochem Physiol A Mol Integr Physiol. 2020;241:110622. PubMed, CrossRef
  7. Haggarty P. Epigenetic consequences of a changing human diet. Proc Nutr Soc. 2013;72(4):363-371. PubMed, CrossRef
  8. Barrès R, Zierath JR. The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nat Rev Endocrinol. 2016;12(8):441-451. PubMedCrossRef
  9. Lee MJ, Yaffe MB. Protein Regulation in Signal Transduction. Cold Spring Harb Perspect Biol. 2016;8(6):a005918. PubMed, PubMedCentral, CrossRef
  10. Lushchak O, Strilbytska O, Piskovatska V, Storey KB, Koliada A, Vaiserman A. The role of the TOR pathway in mediating the link between nutrition and longevity. Mech Ageing Dev. 2017;164:127-138. PubMed, CrossRef
  11. Lushchak O, Strilbytska OM, Yurkevych I, Vaiserman AM, Storey KB. Implications of amino acid sensing and dietary protein to the aging process. Exp Gerontol. 2019;115:69-78. PubMed, CrossRef
  12. Solon-Biet SM, McMahon AC, Ballard JWO, Ruohonen K, Wu LE, Cogger VC, Warren A, Huang X, Pichaud N, Melvin RG, Gokarn R, Khalil M, Turner N, Cooney GJ, Sinclair DA, Raubenheimer D, Le Couteur DG, Simpson SJ. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418-430. PubMed, PubMedCentral, CrossRef
  13. Solon-Biet SM, Mitchell SJ, Coogan SCP, Cogger VC, Gokarn R, McMahon AC, Raubenheimer D, de Cabo R, Simpson SJ, Le Couteur DG. Dietary Protein to Carbohydrate Ratio and Caloric Restriction: Comparing Metabolic Outcomes in Mice. Cell Rep. 2015;11(10):1529-1534. PubMed, PubMedCentral, CrossRef
  14. Simpson SJ, Raubenheimer D. Macronutrient balance and lifespan. Aging (Albany NY). 2009;1(10):875-880. PubMed, PubMedCentral, CrossRef
  15. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S.Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol. 2004;14(10):885-890. PubMed, PubMedCentral, CrossRef
  16. Rovenko BM, Perkhulyn NV, Lushchak OV, Storey JM, Storey KB, Lushchak VI. Molybdate partly mimics insulin-promoted metabolic effects in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol. 2014;165:76-82. PubMed, CrossRef
  17. Bowman E, Tatar M. Reproduction regulates Drosophila nutrient intake through independent effects of egg production and sex peptide: Implications for aging. Nutr Healthy Aging. 2016;4(1):55-61. PubMed, PubMedCentral, CrossRef
  18. Yurkevych IS, Gray LJ, Gospodaryov DV, Burdylyuk NI, Storey KB, Simpson SJ, Lushchak O. Development of fly tolerance to consuming a high-protein diet requires physiological, metabolic and transcriptional changes. Biogerontology. 2020;21(5):619-636. PubMed, CrossRef
  19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-254. PubMedCrossRef
  20. Geer BW, Zacharias CE. Alteration of L-alanine aminotransferase, L-aspartate aminotransferase and beta-hydroxyacyl dehydrogenase activities in Drosophila melanogaster larvae by nutritional manipulation. Comp Biochem Physiol B. 1974;47(1):53-62. PubMed, CrossRef
  21. Matzkin LM, Johnson S, Paight C, Markow TA. Preadult parental diet affects offspring development and metabolism in Drosophila melanogaster. PLoS One. 2013;8(3):e59530. PubMed, PubMedCentral, CrossRef
  22. Valtonen TM, Kangassalo K, Pölkki M, Rantala MJ. Transgenerational effects of parental larval diet on offspring development time, adult body size and pathogen resistance in Drosophila melanogaster. PLoS One. 2012;7(2):e31611. PubMed, PubMedCentral, CrossRef
  23. Long DM, Frame AK, Reardon PN, Cumming RC, Hendrix DA, Kretzschmar D, Giebultowicz JM. Lactate dehydrogenase expression modulates longevity and neurodegeneration in Drosophila melanogaster. Aging (Albany NY). 2020;12(11):10041-10058. PubMed, PubMedCentral, CrossRef
  24. Li H, Rai M, Buddika K, Sterrett MC, Luhur A, Mahmoudzadeh NH, Julick CR, Pletcher RC, Chawla G, Gosney CJ, Burton AK, Karty JA , Montooth KL, Sokol NS, Tennessen JM. Lactate dehydrogenase and glycerol-3-phosphate dehydrogenase cooperatively regulate growth and carbohydrate metabolism during Drosophila melanogaster larval development. Development. 2019;146(17):dev175315. PubMed, PubMedCentral, CrossRef
  25. Farkas R, Knopp J. Genetic and hormonal control of cytosolic malate dehydrogenase activity in Drosophila melanogaster. Gen Physiol Biophys. 1998;17(1):37-50. PubMed
  26. Perkhulyn NV, Rovenko BM, Lushchak OV, Storey JM, Storey KB, Lushchak VI. Exposure to sodium molybdate results in mild oxidative stress in Drosophila melanogaster. Redox Rep. 2017;22(3):137-146. PubMed, PubMedCentral, CrossRef
  27. Magwere T, Chapman T, Partridge L. Sex differences in the effect of dietary restriction on life span and mortality rates in female and male Drosophila melanogaster. J Gerontol A Biol Sci Med Sci. 2004;59(1):3-9. PubMed, CrossRef
  28. Millington JW, Brownrigg GP, Chao C, Su Z, Basner-Collins PJ, Wat LW, Hudry B, Miguel-Aliaga I, Rideout EJ. Female-biased upregulation of insulin pathway activity mediates the sex difference in Drosophila body size plasticity. Elife. 2021;10:e58341. PubMed, PubMedCentral, CrossRef
  29. Graze RM, Tzeng RY, Howard TS, Arbeitman MN. Perturbation of IIS/TOR signaling alters the landscape of sex-differential gene expression in Drosophila. BMC Genomics. 2018;19(1):893. PubMed, PubMedCentral, CrossRef
  30.  Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. 2012;76(2):444-495. PubMed, PubMedCentral, CrossRef
  31. Sookoian S , Pirola CJ. Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome. World J Gastroenterol. 2012;18(29):3775-3781. PubMed, PubMedCentral, CrossRef
  32. Jean C, Rome S, Mathé V, Huneau JF, Aattouri N, Fromentin G, Achagiotis CL, Tomé D. Metabolic evidence for adaptation to a high protein diet in rats. J Nutr. 2001;131(1):91-98. PubMed, CrossRef
  33. Heinrichsen ET, Zhang H, Robinson JE, Ngo J, Diop S, Bodmer R, Joiner WJ, Metallo CM, Haddad GG. Metabolic and transcriptional response to a high-fat diet in Drosophila melanogaster. Mol Metab. 2013;3(1):42-54. PubMed, PubMedCentral, CrossRef
  34. Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD, Meissner A, Weng Z, Hofmann HA, Friedman N, Rando OJ. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell. 2010;143(7):1084-1096. PubMed, PubMedCentral, CrossRef
  35. Stegemann R, Buchner DA. Transgenerational inheritance of metabolic disease. Semin Cell Dev Biol. 2015;43:131-140. PubMed, PubMedCentral, CrossRef
  36. Grindler NM, Moley KH. Maternal obesity, infertility and mitochondrial dysfunction: potential mechanisms emerging from mouse model systems. Mol Hum Reprod. 2013;19(8):486-494. PubMed, PubMedCentral, CrossRef
  37. Macdonald WA. Epigenetic mechanisms of genomic imprinting: common themes in the regulation of imprinted regions in mammals, plants, and insects. Genet Res Int. 2012;2012:585024. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.