Ukr.Biochem.J. 2021; Volume 93, Issue 4, Jul-Aug, pp. 18-25

doi: doi: https://doi.org/10.15407/ubj93.04.018

The role of hypoxia-inducible factors in the development of chronic pathology

N. S. Shevchenko, N. V. Krutenko*, T. V. Zimnytska, K. V. Voloshyn

V. N. Karazin Kharkiv National University, Department of Pediatrics No. 2,Ukraine;
*e-mail: n.v.krutenko@karazin.ua

Received: 13 October 2020; Accepted: 07 July 2021

This review highlights the current understanding of hypoxia-inducible factors (HIFs) role as regulators of oxygen-dependent reactions and inducers of genes expression in  human organism. The focus is on the most significant relationships between the activation or inhibition of the HIFs intracellular system and development of the inflammatory process in various organs, chronic diseases of gastrointestinal tract, osteoarticular system, kidneys as well as  hematological, endocrine and metabolic disorders.

Keywords: , , , ,


References:

  1. Loboda A, Jozkowicz A, Dulak J. HIF-1 and HIF-2 transcription factors — similar but not identical. Mol Cells. 2010;29(5):435-442. PubMed, PubMedCentral, CrossRef
  2.  Pugh CW, O’Rourke JF, Nagao M, Gleadle JM, Ratcliffe PJ. Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem. 1997;272(17):11205-11214. PubMed, CrossRef
  3. Glukhanyuk E. Hypoxia, non-hypoxic hypoxia and immunity. “Biomolecule”. Immunology, medicine, cytology.  2015 November. (In Russian). Available at https://biomolecula.ru/articles/gipoksiia-negipoksicheskaia-gipoksiia-i-immunitet.
  4. Maes C, Carmeliet G, Schipani E. Hypoxia-driven pathways in bone development, regeneration and disease. Nat Rev Rheumatol. 2012;8(6):358-366. PubMed, CrossRef
  5. Wiesener MS, Jürgensen JS, Rosenberger C, Scholze CK, Hörstrup JH, Warnecke C, Mandriota S, Bechmann I, Frei UA, Pugh CW, Ratcliffe PJ, Bachmann S, Maxwell PH, Eckardt KU. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J. 2003;17(2):271-273. PubMed, CrossRef
  6. Press release: The Nobel Prize in Physiology or Medicine 2019. NobelPrize.org. Nobel Media AB 2020. Tue. 13 Oct 2020. Available at  https://www.nobelprize.org/prizes/medicine/2019/press-release/
  7. O’Rourke JF, Dachs GU, Gleadle JM, Maxwell PH, Pugh CW, Stratford IJ, Wood SM, Ratcliffe PJ. Hypoxia response elements. Oncol Res. 1997;9(6-7):327-332. PubMed
  8. Cockman  ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH.  Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem. 2000;275(33):25733-25741. PubMed, CrossRef
  9. Frise MC, Cheng HY, Nickol AH, Curtis MK, Pollard KA, Roberts DJ, Ratcliffe PJ, Dorrington KL, Robbins PA. Clinical iron deficiency disturbs normal human responses to hypoxia. J Clin Invest. 2016;126(6):2139-2150. PubMed, PubMedCentral, CrossRef
  10. Stolze IP, Mole DR, Ratcliffe PJ. Regulation of HIF: prolyl hydroxylases. Novartis Found Symp. 2006;272:15-25; discussion 25-36. PubMed
  11. Taylor CT. Interdependent roles for hypoxia inducible factor and nuclear factor-kappaB in hypoxic inflammation. J Physiol. 2008;586(17):4055-4059. PubMed, PubMedCentral, CrossRef
  12. Bobarykina AYu, Minchenko DO, Opentanova IL, Kovtun OO, Komisarenko SV, Esumi H, Minchenko OH. HIF-1alpha, HIF-2alpha and VHL mRNA expression in different cell lines during hypoxia. Ukr Biokhim Zhurn. 2006;78(2):62-72. (In Ukrainian). PubMed
  13. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187-197. PubMed, CrossRef
  14. Chen Y, Cairns R, Papandreou I, Koong A, Denko NC. Oxygen consumption can regulate the growth of tumors, a new perspective on the Warburg effect. PLoS One. 2009;4(9):e7033. PubMed, PubMedCentral, CrossRef
  15. Minchenko A, Leshchinsky I, Opentanova I, Sang N, Srinivas V, Armstead V, Caro J. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem. 2002;277(8):6183-6187. PubMed, PubMedCentral, CrossRef
  16. Minchenko OH, Ogura T, Opentanova IL, Minchenko DO, Esumi H. Splice isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4: expression and hypoxic regulation. Mol Cell Biochem. 2005;280(1-2):227-234. PubMed, CrossRef
  17. Minchenko OH, Tsuchihara K, Minchenko DO, Bikfalvi A, Esumi H. Mechanisms of regulation of PFKFB expression in pancreatic and gastric cancer cells. World J Gastroenterol. 2014;20(38):13705-13717. PubMed, PubMedCentral, CrossRef
  18. Minchenko O, Opentanova I, Minchenko D, Ogura T, Esumi H. Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 gene via hypoxia-inducible factor-1alpha activation. FEBS Lett. 2004;576(1-2):14-20. PubMed, CrossRef
  19. Lin S, Sun L, Lyu X, Ai X, Du D, Su N, Li H, Zhang L, Yu J, Yuan S. Lactate-activated macrophages induced aerobic glycolysis and epithelial-mesenchymal transition in breast cancer by regulation of CCL5-CCR5 axis: a positive metabolic feedback loop. Oncotarget. 2017;8(66):110426-110443. PubMed, PubMedCentral, CrossRef
  20. Koong AC, Chen EY, Mivechi NF, Denko NC, Stambrook P, Giaccia AJ. Hypoxic activation of nuclear factor-kappa B is mediated by a Ras and Raf signaling pathway and does not involve MAP kinase (ERK1 or ERK2). Cancer Res. 1994;54(20):5273-5279. PubMed
  21. Gleadle JM, Ratcliffe PJ. Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: evidence against a regulatory role for Src kinase. Blood. 1997;89(2):503-509. PubMed, CrossRef
  22. Xu MM, Wang J, Xie JX. Regulation of iron metabolism by hypoxia-inducible factors. Sheng Li Xue Bao. 2017;69(5):598-610. PubMed
  23. Solanki S, Devenport SN, Ramakrishnan SK, Shah YM. Temporal induction of intestinal epithelial hypoxia-inducible factor-2α is sufficient to drive colitis. Am J Physiol Gastrointest Liver Physiol. 2019;317(2):G98-G107. PubMed, PubMedCentral, CrossRef
  24. Van Welden S,  Selfridge AC, Hindryckx P. Intestinal hypoxia and hypoxia-induced signalling as therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol. 2017;14(10):596-611. PubMed, CrossRef
  25. Souza RF, Bayeh L, Spechler SJ, Tambar UK, Bruick RK. A new paradigm for GERD pathogenesis. Not acid injury, but cytokine-mediated inflammation driven by HIF-2α: a potential role for targeting HIF-2α to prevent and treat reflux esophagitis. Curr Opin Pharmacol. 2017;37:93-99. PubMed, PubMedCentral, CrossRef
  26. Huo X, Agoston AT, Dunbar KB, Cipher DJ, Zhang X, Yu C, Cheng E, Zhang Q, Pham TH, Tambar UK, Bruick RK, Wang DH, Odze RD, Spechler SJ, Souza RF. Hypoxia-inducible factor-2α plays a role in mediating oesophagitis in GORD. Gut. 2017;66(9):1542-1554. PubMed, PubMedCentral, CrossRef
  27. Feagins LA, Zhang HY, Zhang X, Hormi-Carver K, Thomas T, Terada LS, Spechler SJ, Souza RF. Mechanisms of oxidant production in esophageal squamous cell and Barrett’s cell lines. Am J Physiol Gastrointest Liver Physiol. 2008;294(2):G411-G417. PubMed, CrossRef
  28. Souza RF, Huo X, Mittal V, Schuler CM, Carmack SW, Zhang HY, Zhang X, Yu C, Hormi-Carver K, Genta RM, Spechler SJ. Gastroesophageal reflux might cause esophagitis through a cytokine-mediated mechanism rather than caustic acid injury. Gastroenterology. 2009;137(5):1776-1784. PubMed, CrossRef
  29. Bouvard B, Abed E, Yéléhé-Okouma M, Bianchi A, Mainard D, Netter P, Jouzeau JY, Lajeunesse D, Reboul P. Hypoxia and vitamin D differently contribute to leptin and dickkopf-related protein 2 production in human osteoarthritic subchondral bone osteoblasts. Arthritis Res Ther. 2014;16(5):459. PubMed, PubMedCentral, CrossRef
  30. Ryu JH, Chae CS, Kwak JS, Oh H, Shin Y, Huh YH, Lee CG, Park YW, Chun CH, Kim YM, Im SH, Chun JS. Hypoxia-inducible factor-2α is an essential catabolic regulator of inflammatory rheumatoid arthritis. PLoS Biol. 2014;12(6):e1001881. PubMed, PubMedCentral, CrossRef
  31. Fearon U, Canavan M, Biniecka M, Veale DJ. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat Rev Rheumatol. 2016;12(7):385-397. PubMed, CrossRef
  32. Konisti S, Kiriakidis S, Paleolog EM. Hypoxia – a key regulator of angiogenesis and inflammation in rheumatoid arthritis. Nat Rev Rheumatol. 2012;8(3):153-162. PubMed, CrossRef
  33. Huh YH, Lee G, Song WH, Koh JT, Ryu JH. Crosstalk between FLS and chondrocytes is regulated by HIF-2α-mediated cytokines in arthritis. Exp Mol Med. 2015;47(12):e197. PubMed, PubMedCentral, CrossRef
  34. Srinivas V, Bohensky J, Zahm AM, Shapiro IM. Autophagy in mineralizing tissues: microenvironmental perspectives. Cell Cycle. 2009;8(3):391-393. PubMed, PubMedCentral, CrossRef
  35. Rankin EB, Giaccia AJ, Schipani E. A central role for hypoxic signaling in cartilage, bone, and hematopoiesis. Curr Osteoporos Rep. 2011;9(2):46-52.
    PubMed, PubMedCentral, CrossRef
  36. Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C. HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J Clin Invest. 2009;119(5):1159-1166. PubMed, PubMedCentral, CrossRef
  37. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, Nizet V, Johnson RS. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest. 2007;117(7):1926-1932. PubMed, PubMedCentral, CrossRef
  38. Lin Q, Yun Z. The Hypoxia-Inducible Factor Pathway in Adipocytes: The Role of HIF-2 in Adipose Inflammation and Hypertrophic Cardiomyopathy. Front Endocrinol (Lausanne). 2015;6:39. PubMed, PubMedCentral, CrossRef
  39. Lin Q, Huang Y, Booth CJ, Haase VH, Johnson RS, Simon, Giordano FJ, Yun Z. Activation of hypoxia-inducible factor-2 in adipocytes results in pathological cardiac hypertrophy. J Am Heart Assoc. 2013;2(6):e000548. PubMed, PubMedCentral, CrossRef
  40. Giaccia AJ. HIF-2: the missing link between obesity and cardiomyopathy. J Am Heart Assoc. 2013;2(6):e000710. PubMed, PubMedCentral, CrossRef
  41. Hikage F, Atkins S, Kahana A, Smith TJ, Chun TH. HIF2A-LOX Pathway Promotes Fibrotic Tissue Remodeling in Thyroid-Associated Orbitopathy. Endocrinology. 2019;160(1):20-35. PubMed, PubMedCentral, CrossRef
  42. Maydannik VG, Burlaka EA, Bagdasarova IV, Lavrenchuk OV. Cellular hypoxia as a mechanism of renal disorders during the chronic pyelonephritis in children. Modern Pediatr. 2013;3(51):132-135. (In Ukrainian).
  43. Maidannyk VG, Burlaka EA, Bagdasarova IV, Fomina SP, Neponyaschiy VM. Role of hypoxia-induced apoptosis in chronic glomerulonephritis progression in children. Ukr Zhurn Nephrol Dial. 2014;(4(44)):41-45. (In Ukrainian). CrossRef
  44. Levina AA, Makeshova AB, Mamukova YuI, Romanova EA, Sergeeva AI, Kazyukova TV. Regulation of oxygen homeostasis. Hypoxia-inducible factor (HIF) and its significance in oxygen homeostasis. Pediatriya. 2009;87(4):92-97. (In Russian).
  45. Maxwell PH. A new approach to treating renal anaemia. Nat Rev Nephrol. 2019;15(12):731-732. PubMed, CrossRef
  46. Aitbaev KA, Murkamilov IT, Fomin VV. Inhibition of HIF-prolyl 4-hydroxylases as a promising approach to the therapy of cardiometabolic diseases. Ter Arkh. 2018;90(8):86-94. (In Russian). PubMed, CrossRef
  47. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721-732. PubMed, CrossRef
  48. Yeh,TL, Leissing TM, Abboud MI, Thinnes CC, Atasoylu O, Holt-Martyn JP, Zhang D, Tumber A, Lippl K, Lohans CT, Leung I, Morcrette H, Clifton IJ, Claridge T, Kawamura A, Flashman E, Lu X, Ratcliffe PJ, Chowdhury R, Pugh CW, Schofield CJ. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem Sci. 2017;8(11):7651-7668. PubMed, PubMedCentral, CrossRef
  49. Bishop T, Ratcliffe PJ. HIF hydroxylase pathways in cardiovascular physiology and medicine. Circ Res. 2015;117(1):65-79. PubMed, PubMedCentral, CrossRef
  50. Cho H, Du X, Rizzi JP, Liberzon E, Chakraborty AA, Gao W, Carvo I, Signoretti S, Bruick RK, Josey JA, Wallace EM, Kaelin WG. On-target efficacy of a HIF-2α antagonist in preclinical kidney cancer models. Nature. 2016;539(7627):107-111. PubMed, PubMedCentral, CrossRef
  51. New HIF-2 kidney cancer therapy more effective than current treatment, study shows. UT Southwestern Medical Center public release. 2016 Sep 5. Available at https://www.eurekalert.org/pub_releases/2016-09/usmc-nhk090216.php
  52. Chen W, Hill H, Christie A, Kim MS, Holloman E, Pavia-Jimenez A, Homayoun F, Ma Y, Patel N, Yell P, Hao G, Yousuf Q, Joyce A, Pedrosa I, Geiger H, Zhang H, Chang J, Gardner KH, Bruick RK, Reeves C, Hwang TH, Courtney K, Frenkel E, Sun X, Zojwalla N, Wong T, Rizzi JP, Wallace EM, Josey JA, Xie Y, Xie XJ, Kapur P, McKay RM, Brugarolas J. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 2016;539(7627):112-117. PubMed, PubMedCentral, CrossRef
  53. Eltzschig HK, Bratton DL, Colgan SP. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat Rev Drug Discov. 2014;13(11):852-869. PubMed, PubMedCentral, CrossRef
  54. Halberg N, Khan T, Trujillo ME, Wernstedt-Asterholm I, Attie AD, Sherwani S, Wang ZV, Landskroner-Eiger S, Dineen S, Magalang UJ, Brekken RA, Scherer PE. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol. 2009;29(16):4467-4483.
    PubMed, PubMedCentral, CrossRef
  55. Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol. 2014;9:47-71. PubMed, CrossRef
  56. Semenza GL. Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol. 2014;76:39-56. PubMed, PubMedCentral, CrossRef
  57. Doaa Fouad, Naglaa Idriss, Sherif Sayed. Plasma Levels of Soluble Receptors of Advanced Glycation End Products Angiogenin and Hypoxia Inducible Factor-1 Alpha in Acute Coronary Syndrome. Heart Mirror J. 2013;7(1):52-59.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.