Ukr.Biochem.J. 2021; Volume 93, Issue 5, Sep-Oct, pp. 90-101

doi: https://doi.org/10.15407/ubj93.05.090

Dietary protein defines stress resistance, oxidative damages and antioxidant defense system in Drosophila melanogaster

O. Strilbytska1*, A. Zayachkivska1, T. Strutynska1,
U. Semaniuk1, A. Vaiserman2, O. Lushchak1,3*

1Vasyl Stefanyk Precarpathian National University,
Department of Biochemistry and Biotechnology, Ivano-Frankivsk, Ukraine;
2D.F. Chebotarev Institute of Gerontology, NAMS, Kyiv, Ukraine;
3Research and Development Institute, Ivano-Frankivsk, Ukraine;
*e-mail: olya_b08@ukr.net or oleh.lushchak@pnu.edu.ua

Received: 06 April 2021; Accepted: 22 September 2021

Dietary interventions have been previously shown to influence lifespan in diverse model organisms. Manipulations with macronutrients content including protein and amino acids have a significant impact on various fitness and behavioral traits in the fruit fly Drosophila melanogaster. Therefore, we asked if yeast amount of the diet could influence stress resistance and antioxidant defense system in Drosophila. We examined the effects of four diets differing in the relative level of yeast, as a source of protein, on resistance to cold, heat, starvation and oxidative stress induced by menadione as well as activities of antioxidant enzymes and levels of oxidative stress markers. Protein restriction as well protein-enriched diet led to a reduction of survival under starvation and oxidative stress conditions. However, enhanced resistance to heat shock was affected by high yeast concentration in the diet. Also, protein-rich diets resulted in higher activity of antioxidant enzymes. Increased levels of protein thiols, low-molecule mass thiols, lipid peroxides in response to high yeast concentration in the diet were detected in females only. Thus, we can assume that consumption of a high protein diet could induce oxidative stress in fruit fly.

Keywords: , , , ,


References:

  1. Lushchak OV, Gospodaryov DV, Rovenko BM, Glovyak AD, Yurkevych IS, Klyuba VP, Shcherbij MV, Lushchak VI. Balance between macronutrients affects life span and functional senescence in fruit fly Drosophila melanogaster. J Gerontol A Biol Sci Med Sci. 2012;67(2):118-125. PubMed, CrossRef
  2. Matzkin LM, Johnson S, Paight C, Bozinovic G, Markow TA. Dietary protein and sugar differentially affect development and metabolic pools in ecologically diverse Drosophila. J Nutr. 2011;141(6):1127-1133. PubMed, CrossRef
  3. Simpson SJ, Raubenheimer D. The geometric analysis of feeding and nutrition: a user’s guide. J Insect Physiol. 1995; 41(7): 545-553. CrossRef
  4. Rovenko BM, Kubrak OI, Gospodaryov DV, Perkhulyn NV, Yurkevych IS, Sanz A, Lushchak OV, Lushchak VI. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J Insect Physiol. 2015;79:42-54. PubMed, CrossRef
  5. Bayliak MM, Abrat OB, Storey JM, Storey KB, Lushchak VI. Interplay between diet-induced obesity and oxidative stress: Comparison between Drosophila and mammals. Comp Biochem Physiol A Mol Integr Physiol. 2019;228:18-28. PubMed, CrossRef
  6.  Anagnostou C, Dorsch M, Rohlfs M. Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomol Exp Appl. 2010; 136: 1-11.  CrossRef
  7. Davis GR. Essential dietary amino acids for growth of larvae of the yellow mealworm, Tenebrio molitor L. J Nutr. 1975;105(8):1071-1075. PubMedCrossRef
  8. Mair W, Piper MDW, Partridge L. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol. 2005;3(7):e223. PubMed, PubMedCentral, CrossRef
  9. Davis TA, Bales CW, Beauchene RE. Differential effects of dietary caloric and protein restriction in the aging rat. Exp Gerontol. 1983;18(6):427-435.
    PubMed, CrossRef
  10. Fernandes G, Yunis EJ, Good RA. Influence of diet on survival of mice. Proc Natl Acad Sci USA. 1976;73(4):1279-1283. PubMed, PubMedCentral, CrossRef
  11. Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact. 2014;224:164-175.  PubMed, CrossRef
  12. Pamplona R, Barja G. Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta. 2006;1757(5-6):496-508. PubMed, CrossRef
  13. Lushchak O, Strilbytska O, Piskovatska V, Storey KB, Koliada A, Vaiserman A. The role of the TOR pathway in mediating the link between nutrition and longevity. Mech Ageing Dev. 2017;164:127-138. PubMed, CrossRef
  14. Lushchak O, Strilbytska OM, Yurkevych I, Vaiserman AM, Storey KB. Implications of amino acid sensing and dietary protein to the aging process. Exp Gerontol. 2019;115:69-78. PubMed, CrossRef
  15. Panchaud N, Péli-Gulli MP, De Virgilio C. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci Signal. 2013;6(277):ra42.  PubMed, CrossRef
  16. Lushchak OV, Gospodaryov DV, Rovenko BM, Yurkevych IS, Perkhulyn NV, Lushchak VI. Specific dietary carbohydrates differentially influence the life span and fecundity of Drosophila melanogaster. J Gerontol A Biol Sci Med Sci. 2014;69(1):3-12. PubMed, CrossRef
  17. Lushchak OV, Rovenko BM, Gospodaryov DV, Lushchak VI. Drosophila melanogaster larvae fed by glucose and fructose demonstrate difference in oxidative stress markers and antioxidant enzymes of adult flies. Comp Biochem Physiol A Mol Integr Physiol. 2011;160(1):27-34. PubMed,CrossRef
  18. Gibert P, Huey RB. Chill-coma temperature in Drosophila: effects of developmental temperature, latitude, and phylogeny. Physiol Biochem Zool. 2001;74(3):429-434. PubMedCrossRef
  19. Lozinsky OV, Lushchak OV, Storey JM, Storey KB, Lushchak VI. Sodium nitroprusside toxicity in Drosophila melanogaster: delayed pupation, reduced adult emergence, and induced oxidative/nitrosative stress in eclosed flies. Arch Insect Biochem Physiol. 2012;80(3):166-185. PubMed, CrossRef
  20. Gospodaryov DV, Strilbytska OM, Semaniuk UV, Perkhulyn NV, Rovenko BM, Yurkevych IS, Barata AG, Dick TP, Lushchak OV, Jacobs HT. Alternative NADH dehydrogenase extends lifespan and increases resistance to xenobiotics in Drosophila. Biogerontology. 2020;21(2):155-171. PubMed, PubMedCentral, CrossRef
  21. Lushchak VI, Bagnyukova TV, Husak VV, Luzhna LI, Lushchak OV, Storey KB. Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int J Biochem Cell Biol. 2005;37(8):1670-1680. PubMedCrossRef
  22. Hermes-Lima M, Willmore WG, Storey KB. Quantification of lipid peroxidation in tissue extracts based on Fe(III)xylenol orange complex formation. Free Radic Biol Med. 1995;19(3):271-280. PubMedCrossRef
  23. Kregel KC. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol. 2002;92(5):2177-2186. PubMed, CrossRef
  24. Min KJ, Tatar M. Drosophila diet restriction in practice: do flies consume fewer nutrients? Mech Ageing Dev. 2006;127(1):93-96. PubMedCrossRef
  25. Strilbytska O, Velianyk V, Burdyliuk N, Yurkevych IS, Vaiserman A, Storey KB, Pospisilik A, Lushchak O. Parental dietary protein-to-carbohydrate ratio affects offspring lifespan and metabolism in drosophila. Comp Biochem Physiol A Mol Integr Physiol. 2020;241:110622. PubMed, CrossRef
  26. Strilbytska O, Strutynska T, Semaniuk U, Burdyliyk N, Lushchak O. Dietary sucrose defines lifespan and metabolism in Drosophila. Ukr Biochem J. 2020;92(5):97-105.  CrossRef
  27. Strilbytska OM, Strutynska TR, Semaniuk UV, Burdyliuk NI, Storey KB, Lushchak OV. Parental dietary sucrose affects metabolic and antioxidant enzyme activities in Drosophila. Entomol Sci. 2021; 24(3): 270-280. CrossRef
  28. Tower J. Heat shock proteins and Drosophila aging. Exp Gerontol. 2011;46(5):355-362. PubMed, PubMedCentral, CrossRef
  29. Andersen LH, Kristensen TN, Loeschcke V, Toft S, Mayntz D. Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J Insect Physiol. 2010;56(4):336-340. PubMed, CrossRef
  30. Duncan RF. Inhibition of Hsp90 function delays and impairs recovery from heat shock. FEBS J. 2005;272(20):5244-5256. PubMed, CrossRef
  31. Tettweiler G, Miron M, Jenkins M, Sonenberg N, Lasko PF. Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP. Genes Dev. 2005;19(16):1840-1843. PubMed, PubMedCentral, CrossRef
  32. Mohanty P, Ghanim H, Hamouda W, Aljada A, Garg R, Dandona P. Both lipid and protein intakes stimulate increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells. Am J Clin Nutr. 2002;75(4):767-772.  PubMed, CrossRef
  33. Żebrowska E, Maciejczyk M, Żendzian-Piotrowska M, Zalewska A, Chabowski A. High Protein Diet Induces Oxidative Stress in Rat Cerebral Cortex and Hypothalamus. Int J Mol Sci. 2019;20(7):1547. PubMed, PubMedCentral, CrossRef
  34. Perkhulyn NV, Rovenko BM, Lushchak OV, Storey JM, Storey KB, Lushchak VI. Exposure to sodium molybdate results in mild oxidative stress in Drosophila melanogaster. Redox Rep. 2017;22(3):137-146. PubMed, PubMedCentral, CrossRef
  35. Magwere T, Chapman T, Partridge L. Sex differences in the effect of dietary restriction on life span and mortality rates in female and male Drosophila melanogaster. J Gerontol A Biol Sci Med Sci. 2004;59(1):3-9. PubMed, CrossRef
  36. Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature. 2002;419(6904):316-321. PubMed, CrossRef
  37. Youngman LD, Park JY, Ames BN. Protein oxidation associated with aging is reduced by dietary restriction of protein or calories. Proc Natl Acad Sci USA. 1992;89(19):9112-9116. PubMed, PubMedCentral, CrossRef
  38. Sanz A, Caro P, Barja G. Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver. J Bioenerg Biomembr. 2004;36(6):545-552. PubMed, CrossRef
  39. Katewa SD, Kapahi P. Role of TOR signaling in aging and related biological processes in Drosophila melanogaster. Exp Gerontol. 2011;46(5):382-390. PubMed, PubMedCentral, CrossRef
  40. Sun X, Wheeler CT, Yolitz J, Laslo M, Alberico T, Sun Y, Song Q, Zou S. A mitochondrial ATP synthase subunit interacts with TOR signaling to modulate protein homeostasis and lifespan in Drosophila. Cell Rep. 2014;8(6):1781-1792. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.