Tag Archives: mRNA expression

Effect of glutamine or glucose deprivation on the expression of cyclin and cyclin-dependent kinase genes in glioma cell line U87 and its subline with suppressed activity of signaling enzyme of endoplasmic reticulum–nuclei-1

D. O. Minchenko1,2,3, O. V. Hubenya1, B. M. Terletsky1,
M. Moenner3, O. H. Minchenko1,3

1Palladin Institute of Biochemistry, National Academy of Science of Ukraine, Kyiv;
e-mail: ominchenko@yahoo.com;
2National O. O. Bohomoletz Medical University, Kyiv, Ukraine;
3INSERM U920 Molecular Mechanisms of Angiogenesis Laboratory,
University Bordeaux 1, Talence, France

Ischemia has been shown to induce a set of complex intracellular signaling events known as the unfolded protein response, which is mediated by endoplasmic reticulum–nuclei-1 sensing enzyme. We have studied the expression of several cyclin and cyclin-dependent kinase genes which participate in the control of cell cycle and proliferation under ischemic conditions (glucose or glutamine deprivation) in endoplasmic reticulum–nuc­lei 1-deficient glioma cells. It was shown that blockade of endoplasmic reticulum–nuclei signaling enzyme-1, the key endoplasmic reticulum stress sensor, leads to an increase of the expression levels of cyclin-dependent kinase-2 and cyclin A2, D3, E2 and G2 genes but suppresses cyclin D1. Moreover, the expression level of cyclin-dependent kinase-2 as well as cyclin A2, D3 and E2 mRNAs is significantly decreased under glucose or glutamine deprivation conditions both in control and endoplasmic reticulum–nuclei-1-deficient glioma cells. However, cyclin-dependent kinase-4 and -5 mRNA expressions is increased, but in glucose deprivation conditions only.  Results of this study have shown that the expression of most tested genes of encoded cyclins and cyclin-dependent kinases is dependent on endoplasmic reticulum–nuclei-1 signaling enzyme function both in normal and glutamine and glucose deprivation conditions and possibly participates in cell adaptive response to endoplasmic reticulum stress associated with ischemia.

Inhibition of IRE1 modifies the hypoxic regulation of GADD family gene expressions in U87 glioma cells

O. H. Minchenko1, I. V. Kryvdiuk1, О. O. Riabovol1,
D. O. Minchenko1,2, S. V. Danilovskyi1, О. O. Ratushna1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: ominchenko@yahoo.com;
2Bohomolets National Medical University, Kyiv, Ukraine

We have studied hypoxic regulation of the expression of genes encoded GADD (growth arrest and DNA damage) family proteins in U87 glioma cells in relation to inhibition of IRE1 (inositol requiring enzyme-1), which controls cell proliferation and tumor growth as a central mediator of endoplasmic reticulum stress. We have shown that hypoxia up-regulates the expression of GADD34, GADD45A, GADD45B, and GADD153 genes, which are related to cell proliferation and apoptosis, in control (transfected by empty vector) glioma cells in gene specific manner. At the same time, the expression level of EIF2AK1 (eukaryotic translation initiation factor 2-alpha kinase 1) and AIFM1 (apoptosis inducing factor, mitochondria associated 1) genes in these cells is down-regulated upon hypoxic condition. It was also shown that inhibition of ІRE1 signaling enzyme function in U87 glioma cells enhances the effect of hypoxia on these genes expression, except EIF2AK1 and AIFM1 genes. Furthermore, the expression of all studied genes in ІRE1 knockdown cells is significantly decreased upon normoxic condition, except GADD45B gene, which expression level is strongly up-regulated. Therefore, the expression level of genes encoding GADD34, GADD45A, GADD45B, GADD153, EIF2AK1, and AIFM1 is affected by hypoxia and by inhibition of IRE1-mediated endoplasmic reticulum stress signaling in gene specific manner and correlates with suppression of glioma cell proliferation upon inhibition of the IRE1 enzyme function.

Hypoxic regulation of the expression of cell proliferation related genes in U87 glioma cells upon inhibition of IRE1 signaling enzyme

O. H. Minchenko1, D. O. Tsymbal1, D. O. Minchenko1,2,
O. O. Riabovol1, O. O. Ratushna1, L. L. Karbovskyi1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: ominchenko@yahoo.com;
2Bohomolets National Medical University, Kyiv, Ukraine

We have studied the effect of inhibition of IRE1 (inositol requiring enzyme 1), which is a central mediator of endoplasmic reticulum stress and a controller of cell proliferation and tumor growth, on hypoxic regulation of the expression of different proliferation related genes in U87 glioma cells. It was shown that hypoxia leads to up-regulation of the expression of IL13RA2, CD24, ING1, ING2, ENDOG, and POLG genes and to down-regulation – of KRT18, TRAPPC3, TSFM, and MTIF2 genes at the mRNA level in control glioma cells. Changes for ING1 and CD24 genes were more significant. At the same time, inhibition of IRE1 modifies the effect of hypoxia on the expression of all studied genes. In particular, it increases sensitivity to hypoxia of the expression of IL13RA2, TRAPPC3, ENDOG, and PLOG genes and suppresses the effect of hypoxia on the expression of ING1 gene. Additionally, it eliminates hypoxic regulation of KRT18, CD24, ING2, TSFM, and MTIF2 genes expressions and introduces sensitivity to hypoxia of the expression of BET1 gene in glioma cells. The present study demonstrates that hypoxia, which often contributes to tumor growth, affects the expression of almost all studied genes. Additionally, inhibition of IRE1 can both enhance and suppress the hypoxic regulation of these gene expressions in a gene specific manner and thus possibly contributes to slower glioma growth, but several aspects of this regulation must be further clarified.

Effect of hypoxia on the expression of genes that encode some IGFBP and CCN proteins in U87 glioma cells depends on IRE1 signaling

O. H. Minchenko1, A. P. Kharkova1, D. O. Minchenko1,2, L. L. Karbovskyi1

1Palladin Institute of Biochemistry, National Academy
of Sciences of Ukraine, Kyiv;
e-mail: ominchenko@yahoo.com;
2Bohomolets National Medical University, Kyiv, Ukraine

We have studied hypoxic regulation of the expression of different insulin-like growth factor binding­ protein genes in U87 glioma cells in relation to inhibition of IRE1 (inositol requiring enzyme-1), a central mediator of endoplasmic reticulum stress, which controls cell proliferation and tumor growth. We have de­monstrated that hypoxia leads to up-regulation of the expression of IGFBP6, IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulation – of IGFBP9/NOV gene at the mRNA level in control glioma cells, being more significant changes for IGFBP10/CYR61 and WISP2 genes. At the same time, inhibition of IRE1 modifies the effect of hypoxia on the expression of all studied genes: eliminates sensitivity to hypoxia the expression of IGFBP7 and IGFBP9/NOV genes, suppresses effect of hypoxia on IGFBP6, IGFBP10/CYR61, and WISP2 genes, and slightly enhances hypoxic regulation of WISP1 gene expression in glioma cells. We have also demonstrated that the expression of all studied genes in glioma cells is regulated by IRE1 signaling enzyme upon normoxic condition, because inhibition of IRE1 significantly up-regulates IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulates IGFBP6 and IGFBP9/NOV genes as compared to control glioma cells. The present study demonstrates that hypoxia, which contributes to tumor growth, affects all studied IGFBP and WISP gene expressions and that inhibition of IRE1 preferentially abolishes or suppresses the hypoxic regulation of these gene expressions and thus possibly contributes to slower glioma growth. Moreover, inhibition of IRE1, which correlates with suppression of cell proliferation and glioma growth, is down-regulated  expression of pro-proliferative IGFBP genes, attesting to the fact that endoplasmic reticulum stress is a necessary component of malignant tumor growth.

Inhibition of IRE1 modifies effect of glucose deprivation on the expression of TNFα-related genes in U87 glioma cells

I. V. Kryvdiuk1, D. O. Minchenko1,2, N. A. Hlushchak1,
O. O. Ratushna1, L. L. Karbovskyi1, O. H. Minchenko1

1Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv;
e-mail: ominchenko@yahoo.com;
2Bohomolets National Medical University, Kyiv, Ukraine

Inhibition of IRE1 (inositol requiring enzyme-1), the major signaling pathway of endoplasmic reticulum stress, significantly decreases glioma cell proliferation and tumor growth. We have studied the expression of TNFα-related genes and effect of glucose deprivation on these gene expressions in U87 glioma cells overexpressing dominant-negative IRE1 defective in both kinase and endonuclease (dn-IRE1) activity of IRE1 with hopes of elucidating its contribution to IRE1 mediated glioma growth. We have demonstrated that glucose deprivation condition leads to down-regulation of the expression of TNFRSF11B, TNFRSF1A, TNFRSF10D/TRAILR4, and LITAF genes and up-regulation of TNFRSF10B/TRAILR2/DR5 gene at the mRNA level in control glioma cells. At the same time, the expression of TNFRSF21/DR6, TNFAIP1, TNFAIP3, TRADD, and CD70/TNFSF7 genes in control glioma cells is resistant to glucose deprivation condition. The inhibition of IRE1 modifies the effect of glucose deprivation on LITAF, TNFRSF21, TNFRSF11B, and TRADD gene expressions and induces sensitivity to glucose deprivation condition the expression of TNFRSF10B, TNFRSF1A, and CD70 genes. We have also demonstrated that the expression of all studied genes is affected in glioma cells by inhibition of IRE1, except TNFRSF1A gene, as compared to control glioma cells. Moreover, the changes in the expression of TNFRSF1A, TNFRSF10D/TRAILR4, and LITAF genes induced by glucose deprivation condition have opposite orientation to that induced by inhibition of IRE1. The present study demonstrates that fine-tuning of the expression of TNFα-induced proteins and TNF receptor superfamily genes, which related to cell death and proliferation, is regulated by IRE1, an effector of endoplasmic reticulum stress, as well as depends on glucose deprivation in gene specific manner. Thus, the inhibition of kinase and endoribonuclease activity of IRE1 correlates with deregulation of TNFα-induced protein genes and TNF receptor superfamily genes in gene specific manner and thus slower the tumor growth.

ERN1 knockdown modifies the hypoxic regulation of TP53, MDM2, USP7 and PERP gene expressions in U87 glioma cells

S. V. Danilovskyi1, D. O. Minchenko1,2, О. S. Moliavko1,
O. V. Kovalevska1, L. L. Karbovskyi1, O. H. Minchenko1

1Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv;
e-mail: ominchenko@yahoo.com;
2Bogomolets National Medical University, Kyiv, Ukraine

Endoplasmic reticulum stress and hypoxia are necessary components of malignant tumors growth and suppression of ERN1 (from endoplasmic reticulum to nuclei-1) signalling pathway, which is linked to the apoptosis and cell death processes, significantly decreases proliferative processes. Glioma cells with ERN1 knockdown were used in order to investigate the effect of ERN1 blockade on the expression of TP53, MDM2, PERP, and USP7 genes and its hypoxic regulation. We have studied the expression of TP53 (tumor protein 53), MDM2 (TP53 E3 ubiquitin protein ligase homolog), PERP (TP53 apoptosis effector), and USP7 (ubiquitin specific peptidase 7) genes, which are related to cell proliferation and apoptosis, in glioma cells with ERN1 knockdown under hypoxic condition. It was shown that blockade of ERN1 gene function in U87 glioma cells intensified the expression of TP53 and USP7 genes, but decreased the expression of MDM2 and PERP genes. Thus, an enhanced expression of TP53 gene in ERN1 knockdown glioma cells correlates with the decreased level of ubiquitin ligase MDM2 and increased expression level of USP7 which deubiquitinates TP53 and MDM2 and induces TP53-dependent cell growth repression and apoptosis. At the same time, the expression levels of TP53, MDM2, and USP7 genes do not change significantly in glioma cells with suppression of endoribonuclease activity only, but PERP gene expression is strongly increased. Moreover, the expression of TP53 and UPS7 genes is decreased in hypoxic conditions in control glioma cells only; however, MDM2 and PERP gene expressions are increased in both cell types, being more significant in ERN1 knockdown cells. Thus, the expression of genes encoding TP53 and related to TP53 factors depends upon the endoplasmic reticulum stress signaling as well as on hypoxia, and correlates with suppression of glioma growth under ERN1 knockdown.

Effect of hypoxia on the expression of CCN2, PLAU, PLAUR, SLURP1, PLAT and ITGB1 genes in ERN1 knockdown U87 glioma cells

O. H. Minchenko1, A. P. Kharkova1, K. I. Kubaichuk1,
D. O. Minchenko1,2, N. A. Hlushchak1, O. V. Kovalevska1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: ominchenko@yahoo.com;
2Bogomolets National Medical University, Kyiv, Ukraine;

The endoplasmic reticulum stress is an important factor of tumor growth and is induced in cancer cells. We have studied the effect of ERN1 knockdown as well as hypoxia on the expression of genes encoding­ factors, which control cell proliferation, in U87 glioma cells. It was shown that the complete blockade of ERN1 enzyme function leads to an increase of the PLAT (tissue plasminogen activator), CCN2 (CCN family member 2), and ITGB1 (integrin β-1) as well as to a decrease of PLAU (plasminogen activator, urokinase), PLAUR (plasminogen activator, urokinase receptor), and SLURP1 (secreted LY6/PLAUR domain containing 1) mRNA expressions. Moreover, we have shown that hypoxia does not affect the expression level of ITGB1 mRNA, but increases that of CCN2, PLAUR, SLURP1, and PLAT mRNA and decreases the expression level of only PLAU mRNA in control glioma cells. At the same time, in ERN1 knockdown glioma cells the expression level of PLAU, PLAUR, and SLURP1 mRNA is decreased under hypoxia, but PLAT and ITGB1 mRNA expression levels are increased under these experimental conditions. Thus, results of this study have shown that the expression level of all studied genes is affected by ERN1 knockdown as well as by hypoxia and that the effect of hypoxia mostly depends on ERN1 signaling enzyme function.

Inhibition of ERN1 signaling enzyme affects hypoxic regulation of the expression of E2F8, EPAS1, HOXC6, ATF3, TBX3 and FOXF1 genes in U87 glioma cells

O. H. Minchenko1, D. O. Tsymbal1, D. O. Minchenko1,2,
O. V. Kovalevska1, L. L. Karbovskyi1, A. Bikfalvi3

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: ominchenko@yahoo.com;
2Bogomolets National Medical University, Kyiv, Ukraine;
3INSERM U1029 Angiogenesis and Cancer Microenvironment Laboratory,
University Bordeaux 1, Talence, France

Hypoxia as well as the endoplasmic reticulum stress are important factors of malignant tumor growth and control of the expression of genes, which regulate numerous metabolic processes and cell proliferation. Furthermore, blockade of ERN1 (endoplasmic reticulum to nucleus 1) suppresses cell proliferation and tumor growth. We  studied the effect of hypoxia on the expression of genes encoding the transcription factors such as E2F8 (E2F transcription factor 8), EPAS1 (endothelial PAS domain protein 1), TBX3 (T-box 3), ATF3 (activating transcription factor 3), FOXF1 (forkhead box F1), and HOXC6 (homeobox C6) in U87 glioma cells with and without ERN1 signaling enzyme function. We have established that hypoxia enhances the expression of HOXC6, E2F8, ATF3, and EPAS1 genes but does not change TBX3 and FOXF1 gene expression in glioma cells with ERN1 function. At the same time, the expression level of all studied genes is strongly decreased, except for TBX3 gene, in glioma cells without ERN1 function. Moreover, the inhibition of ERN1 signaling enzyme function significantly modifies the effect of hypoxia on the expression of these transcription factor genes: removes or introduces this regulation as well as changes a direction or magnitude of hypoxic regulation. Present study demonstrates that fine-tuning of the expression of proliferation related genes depends upon hypoxia and ERN1-mediated endoplasmic reticulum stress signaling and correlates with slower proliferation rate of glioma cells without ERN1 function.