Tag Archives: quercetin

Evaluation of the spectral characteristics, purity and antioxidant activity of C-phycocyanin from the cyanobacteria collected in Kaunas Lagoon (Lithuania)

N. Hudz1,2*, V. Turkina3, O. Yezerska1, L. Kobylinska4, A. Filipska1,
J. Karosienė5, D. Galinytė6, G. Balčiūnaitė–Murzienė7,
S. Khomyak8, N. Savickienė9

1Department of Drug Technology and Biopharmacy,
Danylo Halytsky Lviv National Medical University, Lviv, Ukraine;
2Department of Pharmacy and Ecological Chemistry, University of Opole, Poland;
3Research Institute of Epidemiology and Hygiene,
Danylo Halytsky Lviv National Medical University, Lviv, Ukraine;
4Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine;
5Laboratory of Algology and Microbial Ecology, Nature Research Centre, Vilnius, Lithuania;
6Department of Pharmacognosy, Lithuanian University of Health Sciences, Kaunas, Lithuania;
7Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania;
8Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology,
Lviv Polytechnic National University, Lviv, Ukraine;
9Department of Pharmacognosy, Lithuanian University of Health Sciences, Kaunas, Lithuania;
*e-mail: natali_gudz@ukr.net

Received: 09 October 2022; Revised: 14 November 2022;
Accepted: 16 November 2022; Available on-line: 19 December 2022

The physicochemical characteristics of phycocyanin extracted from cyanobacteria collected in Kaunas Lagoon were studied (spectrum characteristics, C-PC content in the dry mass and chemical purity). It was determined that the tested concentrations of C-PC in purified water should be in the range of 0.02–0.16% for measuring C-PC content in the dry mass and its spectrum characteristics. The two clear absorption maxima were detected in the spectrum of C-PC at the wavelengths of 277 and 619 nm. The content of C-PC in the dry powder form was in the range of 7.25% to 9.30% depending on its concentration in the solution and type of spectrophotometer. Furthermore, a purity factor of 1.5 was calculated, which indicated the food qualification of the obtained biomass of C-PC. Finally, the analytical procedure for studying the pro- and anti-oxidant activity of C-PC was developed and the antioxidant activity of C-PC was measured for the available markers. It was revealed that C-PC has dual properties (pro- and anti-oxidant ones) depending on its concentration, more exactly, its content in reaction mixtures with 2,2-diphenyl-1-picrylhydrazyl (DPPH). The following issues were resolved during the research: the concentration of ethanol in the DPPH solution was chosen in order to avoid precipitation of proteins in the reaction mixtures (50%); the ratio of the solution of C-PC to the DPPH solution was selected; the selected concentrations of the markers for the construction of their calibration curves were chosen for quercetin and for rutin. The antioxidant activity of the obtained C-PC sample was determined.

Quercetin and histamine effects on free radical reactions in rat erythrocytes

N. P. Harasym*, M. Y. Booklyv, A. R. Zyn, S. M. Mandzynets,
A. O. Bezkorovainy, D. I. Sanahursky

Ivan Franko National University of Lviv, Faculty of Biology, Departments of Biophysics and Bioinformatics, Ukraine;
*e-mail: garasymnataly@gmail.com

Received: 12 June 2020; Accepted: 17 December 2020

The effects of quercetin and histamine separately or in combination on the free radical state of rat erythrocytes were estimated in vitro. Quercetin (0.1; 0.5; 3.0; 5.0 mM) or histamine (0.01; 10.0 μM) were added to whole blood separately or in combination. The content of hydroperoxides, TBA-active products and carbonyl groups of proteins in erythrocytes after hemolysis was determined. The greatest influence of quercetin and histamine on erythrocytes state indicators was revealed under their combined action, when the level of TBA-active products and the content of carbonyl groups of proteins were found to be increased substantially.

The effect of quercetin on oxidative stress markers and mitochondrial permeability transition in the heart of rats with type 2 diabetes

N. I. Gorbenko1, O. Yu. Borikov2, O. V. Ivanova1, E. V. Taran1,
Т. S. Litvinova1, T. V. Kiprych1, A. S. Shalamai3

1V. Danilevsky Institute of Endocrine Pathology Problems, National Academy of Medical Sciences of Ukraine, Kharkiv;
2V. N. Karazin Kharkiv National University, Ukraine;
3PJSC SIC “Borshchahivskiy Chemical-Pharmaceutical Plant”, Kyiv, Ukraine;
е-mail: Gorbenkonat58@ukr.net

Received: 24 June 2019; Accepted: 13 August 2019

Increasing evidence suggests that oxidative stress and induction of mitochondrial permeability transition in cardiomyocytes are linked to tissue damage and the development of diabetic cardiovascular complications. The aim of this study was to assess the effects of quercetin (Q) on oxidative stress and mitochondrial permeability transition in the heart of rats with type 2 diabetes mellitus (DM). Type 2 DM was induced in 12-week-old male Wistar rats by intraperitoneal injections of 25 mg/kg streptozotocin twice per week followed by a high-fat diet during four weeks. The rats were divided into three groups: control intact group (C, n = 8), untreated diabetic group (Diabetes, n = 8) and diabetic rats treated with Q (50 mg/kg/day per os for 8 weeks) after diabetes induction (Diabetes+Q, n = 8). Administration of Q increased insulin sensitivity and normali­zed the functional state of cardiac mitochondria due to increased aconitase and succinate dehydrogenase activities in rats with type 2 DM. Q also ameliorated oxidative stress, decreasing the level of advanced oxidation protein products and increasing the activity of thioredoxin-reductase in heart mitochondria of diabetic rats. In addition, Ca2+-induced opening of the mitochondrial permeability transition pore was significantly inhibited in diabetic rats treated with Q in comparison with the untreated diabetic group. These data demonstrate that Q can protect against oxidative stress, mitochondrial permeability transition induction and mitochondrial dysfunction in cardiomyocytes of diabetic rats. We suggest that the use of Q may contribute to the amelioration of cardiovascular risk in type 2 DM.