Ukr.Biochem.J. 2014; Volume 86, Issue 6, Nov-Dec, pp. 167-174


The influence of low-molecular fraction from cord blood (below 5 kDa) on functional and biochemical parameters of cells in vitro

A. K. Gulevsky, N. N. Moisieieva, O. L. Gorina,
J. S. Akhatova, A. A. Lavrik, A. V. Trifonova

Institute for Problems of Cryobiology and Cryomedicine,
National Academy of Sciences of Ukraine, Kharkiv;

The influence of a low-molecular fraction (below 5 kDa) from the cattle cord blood (CBF) on functional activity of phagocytes, human embryonic fibroblasts, mesenchymal stromal cells and BHK-21 clone 13/04 and PK-15 cells was studied. The low-molecular fraction added to culture medium increases the growth rate of cell cultures. The incubation of leukoconcentrate in the CBF-containing medium results in an increase in phagocytic indices of neutrophils in the presence of a phagocytosis inhibitor – sodium iodoacetate, leading to a significant increase in intracellular glucose content and alkaline phosphatase activity as compared to the control and the reference drug Actovegin®.

Keywords: , , , , , , , , ,


  1. Gulevsky AK, Gorina OL, Moiseyeva NN, Stepanyuk LV. Stimulatory effects of the cord blood low-molecular fraction (below 5 kDa) and Actovegin on phagocytic activity of cryopreserved leukocytes. Ukr J Hematol Transfusiol. 2010;(1):22-29. (In Ukrainian).
  2. Moiseyeva NN. The influence of a low molecular fraction (less then 5 kD) from cord blood on regeneration process in burn wounds in rats. World Biol. Med. 2009;(3):117-120. (In Ukrainian).
  3. Gulevsky AK, Moiseyeva NN, Gorina OL. Influence of low molecular (below 5 KD) fraction from cord blood and actovegin on phagocytic activity of frozen-thawed neutrophils. Cryo Letters. 2011 Mar-Apr;32(2):131-40. PubMed
  4. Gulevsky AK, Abakumova ES, Moise­yeva NN, Dolgih OL. Influence of fraction from cattle cord blood on biochemical parameters in experimental subchronic gastric ulcer in rats (below 5 kDa). Ukr Biokhim Zhurn. 2008;80(2):92-99. (In Ukrainian).
  5. Brock TD. Membrane Filtration. Ed. B. V. Mchedlishvili. M.: Mir, 1987. 464 p. (In Russian).
  6. Practical Protein Chemistry. Ed. A. Darbre. M.: Mir, 1989. 623 p. (In Russian).
  7. Basic Cell Culture. Practical Approach. Second edition. Ed. J. M. Davis. Oxford: University Press, 2001. 381 p.
  8. Blyumkin VN, Zhdanov VM. Effect of viruses on the chromosome apparatus and cell division. M .: Medicine, 1973. 267 p. (In Russian).
  9. Grishina VV, Timokhina EV, Andreeva LYu. Collection system and fractionation cord blood stem cells. Questions Gynecol. Obstet. Perinatol. 2004;3(6):50-54. (In Russian).
  10. Tietz NU. Encyclopedia of clinical laboratory tests. Ed. VV. Menshikov. M.: Labinform, 1997. 960 p. (In Russian).
  11. Tsai MA, Waugh RE, Keng PC. Passive mechanical behavior of human neutrophils: effects of colchicine and paclitaxel. Biophys J. 1998 Jun;74(6):3282-91. PubMed, PubMedCentral, CrossRef
  12. D’Onofrio C, Paradisi F, Piccolo D. The influence of some metabolic inhibitors on in vitro phagocytizing macrophages. I. The behaviour of human macrophages. Med Microbiol Immunol. 1977 Oct 7;163(3):195-207. PubMed, CrossRef
  13. Wood TE, Dalili S, Simpson CD, Hurren R, Mao X, Saiz FS, Gronda M, Eberhard Y, Minden MD, Bilan PJ, Klip A, Batey RA, Schimmer AD. A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death. Mol Cancer Ther. 2008 Nov;7(11):3546-55. PubMed, CrossRef
  14. Burtis CA, Ashwood ER. Tietz Textbook of Clinical Chemistry, 2nd edition. Amer. Assn for Clinical Chemistry, 1994. P. 2370.
  15. Bainton DF. Sequential degranulation of the two types of polymorphonuclear leukocyte granules during phagocytosis of microorganisms. J Cell Biol. 1973 Aug;58(2):249-64. PubMed, PubMedCentral, CrossRef
  16. Mushkambarov NN, Kuznetsov SL. Molecular biology: a textbook for medical students. M.: Medical Information Agency, 2003. 544 p. (In Russian).
  17. Rumyantseva SA. Actovegin. New aspects of clinical application. M., 2002. 280 p. (In Russian).
  18. Ulanovskaya OA, Cui J, Kron SJ, Kozmin SA. A pairwise chemical genetic screen identifies new inhibitors of glucose transport. Chem Biol. 2011 Feb 25;18(2):222-30. PubMed, PubMedCentral, CrossRef
  19. Blodgett DM, Graybill C, Carruthers A. Analysis of glucose transporter topology and structural dynamics. J Biol Chem. 2008 Dec 26;283(52):36416-24. PubMed, PubMedCentral, CrossRef
  20. Ebstensen RD, Plagemann PG. Cytochalasin B: inhibition of glucose and glucosamine transport. Proc Natl Acad Sci USA. 1972 Jun;69(6):1430-4. PubMed, PubMedCentral, CrossRef
  21. Hebert DN, Carruthers A. Glucose transporter oligomeric structure determines transporter function. Reversible redox-dependent interconversions of tetrameric and dimeric GLUT1. J Biol Chem. 1992 Nov 25;267(33):23829-38. PubMed
  22. Salas-Burgos A, Iserovich P, Zuniga F, Vera JC, Fischbarg J. Predicting the three-dimensional structure of the human facilitative glucose transporter glut1 by a novel evolutionary homology strategy: insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules. Biophys J. 2004 Nov;87(5):2990-9. PubMed, PubMedCentral, CrossRef
  23. Gulevsky AK, Veselovskaya YuS. Modern views on the energy metabolism of leukocytes. Ukr J Hematol Transfusiol. 2011;(6):5-18. (In Ukrainian).
  24. Schuster DP, Brody SL, Zhou Z, Bernstein M, Arch R, Link D, Mueckler M. Regulation of lipopolysaccharide-induced increases in neutrophil glucose uptake. Am J Physiol Lung Cell Mol Physiol. 2007 Apr;292(4):L845-51.  PubMed, CrossRef
  25. Nazarenko GI, Kiskun AA. Clinical evaluation of laboratory results. M.: Medicine, 2007. 544 p. (In Russian).
  26. Shubich MG, Nagoev BS. Leukocyte alkaline phosphatase in health and disease. M.: Medicine, 1980. 224 p. (In Russian).

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.