Ukr.Biochem.J. 2013; Volume 85, Issue 3, May-Jun, pp. 52-61

doi: http://dx.doi.org/10.15407/ubj85.03.052

Functions of metallothioneins and a system of antioxidant defense under the effect of Co- and Zn-containing nanocomposites on crucian carp (Carassius auratus gibelio)

H. I. Falfushynska1,2, L. L. Gnatyshyna1, O. O. Turta1, O. B. Stoliar1,
N. E. Mitina3, O. S. Zaichenko3, R. S. Stoika4

1Volodymyr Hnatiuk Ternopil National Pedagogical University, Ukraine;
2I. Ya. Horbachevski Ternopil State Medical University, Ukraine;
e-mail: halynka.f@gmail.com;
3Lviv Polytechnic National University, Ukraine;
4Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv

The effect of metal-nanocomposites (Me-NC) of cobalt and zinc (Co- and Zn-NC, correspondingly) synthecized on the basis of vinylpyrrolidone (PS) on the metal-accumulative proteins with antioxidant potential metallothioneins (MT) in crucian carp (Carassius auratus gibelio) was studied­. Fish was subjected to the effect of Co-NC, Zn-NC, Co2+, Zn2+ or polymer carrier (PC) in the concentrations correspondent to 50 µg×Co/l or 100 µg×Zn/l during 14 days. It was shown that the MTs response is highly specific for the nature of metal, both in ion and Me-NC form: the effect of Co and Co-NC provoked the elevation of total MT concentration (MT-SH) and activation of antioxidant defence, whereas Zn and Zn-NC induced the decrease of the concentration of MT-SH and the inhibition of antioxidant defense. All the exposures provoked the decrease of the concentration of immunoreactive chelating MT form (MTi) and reduced glutathione, activation of anaerobiosys and Mn-superoxide dismutase, and also decrease of the concentration of proteins and lipids oxidative injury products. It was accompanied by the increase of the content of erythrocytes with nuclear abnormalities but did not cause the decrease of choline esterase activity. According to the rate of MT-SH and MTi concentrations, antioxidant potential of MTs is determined by its apoform. Our data indicate that partial biodegradation of Me-NC occurs in the organism of crucian carp.

Keywords: , , , , , ,


References:

  1. Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology. 2008 May;17(4):287-314. Review. PubMedCrossRef
  2.  Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E, Migliore L. Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis. 2008 Sep;23(5):377-82. PubMed, CrossRef
  3. Luther EM, Schmidt MM, Diendorf J, Epple M, Dringen R. Upregulation of metallothioneins after exposure of cultured primary astrocytes to silver nanoparticles. Neurochem Res. 2012 Aug;37(8):1639-48. PubMed, CrossRef
  4. Falfushynska HI, Gnatyshyna LL, Stoliar OB, Mitina NE, Zaichenko OS, Filyak YeZ, Stoika RS. Evaluation of biological effects of cobaltnanocomposites with the use of biochemical markers of bivalve mollusk Anodonta cygnea. Ukr Biokhim Zhurn. 2011 Sep-Oct;83(5):40-7. PubMed
  5.  Falfushynska H, Gnatyshyna L, Stoliar O, Mitina N, Skorokhoda T, Filyak Y, Zaichenko A, Stoika R. Evaluation of biotargeting and ecotoxicity of Co²⁺-containing nanoscale polymeric complex by applying multi-marker approach in bivalve mollusk Anodonta cygnea. Chemosphere. 2012 Aug;88(8):925-36. PubMed, CrossRef
  6. Falfushynska HI, Gnatyshyna LL, Stoliar OB, Nam  YK. Various responses to copper and manganese exposure of Carassius auratus gibelio from two populations.  Comp Biochem Physiol C Toxicol Pharmacol. 2011 Sep;154(3):242-53. PubMedCrossRef
  7. Kubrak OI, Husak VV, Rovenko BM, Storey JM, Storey KB, Lushchak VI. Cobalt-induced oxidative stress in brain, liver and kidney of goldfish Carassius auratus. Chemosphere. 2011 Oct;85(6):983-9. PubMed, CrossRef
  8. Overnell J, Good M, Vasàk M. Spectroscopic studies on cadmium (II)- and cobalt(II)-substituted metallothionein from the crab Cancer pagurus. Evidence for one additional low-affinity metal-binding site. Eur J Biochem. 1988 Feb 15;172(1):171-7. PubMed, CrossRef
  9. Krezel A, Maret W. Different redox states of metallothionein/thionein in biological tissue. Biochem J. 2007 Mar 15;402(3):551-8. PubMed, PubMedCentral, CrossRef
  10. Buerki-Thurnherr T, Xiao L, Diener L, Arslan O, Hirsch C, Maeder-Althaus X, Grieder K, Wampfler B, Mathur S, Wick P, Krug HF. In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology. 2013 Jun;7(4):402-16. PubMed, CrossRef
  11. Zaichenko AS,  Voronov SA,  Kuzayev AI,  Shevchuk OM, Vasilyev VP.  Control of microstructure and molecular weight distribution of carbon-chain heterofunctional oligoperoxidic curing agents. J Appl Polymer Sci. 1998;70(12):2449-2455. CrossRef
  12. Beregova TV, Eshchenko YV, Bovt VD, Eshchenko VA. Zinc and the Secretory Material Content in Blood Granulocytes and in the Basal Parts of Intestine Crypts during Stress. Int J Physiol Pathophysiol. 2011;2(3)211-216.  CrossRef
  13. Kobayashi M, Shimizu S. Cobalt proteins. Eur J Biochem. 1999 Apr;261(1):1-9. Review. PubMedCrossRef
  14.  Figgitt M, Newson R, Leslie IJ, Fisher J, Ingham E, Case CP. The genotoxicity of physiological concentrations of chromium (Cr(III) and Cr(VI)) and cobalt (Co(II)): an in vitro study. Mutat Res. 2010 Jun 1;688(1-2):53-61. PubMed, CrossRef
  15. Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276-87. PubMed, CrossRef
  16. Anderson ME. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985;113:548-55. PubMed, CrossRef
  17. Viarengo A, Ponzano E, Dondero F, Fabbri R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar Environ Res. 1997;44(1):69-84. CrossRef
  18. Methods of Enzymatic Analysis (Berg­meyer H. U., ed.), 3rd ed., Vol VI, VCH Publishers (UK) Ltd., Cambridge, UK, 1988. 908 р.
  19. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7(2):88-95. PubMed, CrossRef
  20.  Baršienė J., Andreikėnaitė L., Rybakovas A. Cyto genetic damage in perch (Perca fl uviatilis L.) and Duck mussel (Anodonta anatina L.) exposed to crude oil.  Ekologija. 2006;(1):25-31.
  21. Pat. 45298 UA, ICP А61К 38/04; В63С 9/00; С12N 9/00; G01N 33/00. Method for integral assessment of the biological response to the state of the aquatic environment / Stoliar О.B.,  Falfushynska H.I., Mishchuk O.V.  Publ.  10.11.2009, Bull. No 21.
  22. Livingstone DR. The fate of organic xenobiotics in aquatic ecosystems: quantitative and qualitative differences in biotransformation by invertebrates and fish. Comp Biochem Physiol A Mol Integr Physiol. 1998 May;120(1):43-9. Review. PubMed, CrossRef
  23.  Bracken WM, Klaassen CD. Induction of metallothionein in rat primary hepatocyte cultures: evidence for direct and indirect induction. J Toxicol Environ Health. 1987;22(2):163-74. PubMed, CrossRef
  24. Yang J, Cao Y, Yang MS. Determination of metallothionein content in hepatoma cells by differential pulse polarography. Chem Biol Interact. 1998 Sep 4;115(2):109-16. PubMed, CrossRef
  25. Andersen RA, Daae HL. Preparation of metallothionein from rat liver and studies of its properties with respect to use as a standard in gel permeation chromatography, polyacrylamide gel systems, autoradiography and Western blotting. Comp Biochem Physiol B. 1988;90(1):59-67. PubMed, CrossRef
  26. Sutherland DE, Summers KL, Stillman MJ. Noncooperative metalation of metallothionein 1a and its isolated domains with zinc. Biochemistry. 2012 Aug 21;51(33):6690-700. PubMed, CrossRef
  27. Pitt BR, Schwarz M, Woo ES, Yee E, Wasserloos K, Tran S, Weng W, Mannix RJ, Watkins SA, Tyurina YY, Tyurin VA, Kagan VE, Lazo JS. Overexpression of metallothionein decreases sensitivity of pulmonary endothelial cells to oxidant injury. Am J Physiol. 1997 Oct;273(4 Pt 1):L856-65. PubMed
  28. Akita K, Okamura H, Yoshida K, Morimoto H, Ogawa-Iyehara H, Haneji T. Cobalt chloride induces apoptosis and zinc chloride suppresses cobalt-induced apoptosis by Bcl-2 expression in human submandibular gland HSG cells. Int J Oncol. 2007 Oct;31(4):923-9. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.